AoPS Community

Mikls Schweitzer 1971

www.artofproblemsolving.com/community/c3705
by ehsan2004

1 Let G be an infinite compact topological group with a Hausdorff topology. Prove that G contains an element $g \neq 1$ such that the set of all powers of g is either everywhere dense in G or nowhere dense in G.

J. Erdos

2 Prove that there exists an ordered set in which every uncountable subset contains an uncountable, well-ordered subset and that cannot be represented as a union of a countable family of well-ordered subsets.

A. Hajnal

3 Let $0<a_{k}<1$ for $k=1,2, \ldots$. Give a necessary and sufficient condition for the existence, for every $0<x<1$, of a permutation π_{x} of the positive integers such that

$$
x=\sum_{k=1}^{\infty} \frac{a_{\pi_{x}}(k)}{2^{k}} .
$$

P. Erdos

4 Suppose that V is a locally compact topological space that admits no countable covering with compact sets. Let C
denote the set of all compact subsets of the space V and \mathbf{U} the set of open subsets that are not contained in any compact set. Let f be a function from \mathbf{U} to \mathbf{C} such that $f(U) \subseteq U$ for all $U \in \mathbf{U}$. Prove that either
(i) there exists a nonempty compact set C such that $f(U)$ is not a proper subset of C whenever $C \subseteq U \in \mathbf{U}$,
(ii) or for some compact set C, the set

$$
f^{-1}(C)=\bigcup\{U \in \mathbf{U}: \quad f(U) \subseteq C\}
$$

is an element of \mathbf{U}, that is, $f^{-1}(C)$ is not contained in any compact set.

A. Mate

5 Let $\lambda_{1} \leq \lambda_{2} \leq \ldots$ be a positive sequence and let K be a constant such that

$$
\sum_{k=1}^{n-1} \lambda_{k}^{2}<K \lambda_{n}^{2}(n=1,2, \ldots)
$$

Prove that there exists a constant K^{\prime} such that

$$
\sum_{k=1}^{n-1} \lambda_{k}<K^{\prime} \lambda_{n}(n=1,2, \ldots)
$$

L. Leindler

6 Let $a(x)$ and $r(x)$ be positive continuous functions defined on the interval $[0, \infty)$, and let

$$
\liminf _{x \rightarrow \infty}(x-r(x))>0
$$

Assume that $y(x)$ is a continuous function on the whole real line, that it is differentiable on $[0, \infty)$, and that it satisfies

$$
y^{\prime}(x)=a(x) y(x-r(x))
$$

on $[0, \infty)$. Prove that the limit

$$
\lim _{x \rightarrow \infty} y(x) \exp \left\{-\int_{0}^{x} a(u) d u\right\}
$$

exists and is finite.

I. Gyori

7 Let $n \geq 2$ be an integer, let S be a set of n elements, and let $A_{i}, 1 \leq i \leq m$, be distinct subsets of S of size at least 2 such that

$$
A_{i} \cap A_{j} \neq \emptyset, A_{i} \cap A_{k} \neq \emptyset, A_{j} \cap A_{k} \neq \emptyset, \text { imply } A_{i} \cap A_{j} \cap A_{k} \neq \emptyset .
$$

Show that $m \leq 2^{n-1}-1$.

P. Erdos

8 Show that the edges of a strongly connected bipolar graph can be oriented in such a way that for any edge e there is a simple directed path from pole p to pole q containing e. (A strongly connected bipolar graph is a finite connected graph with two special vertices p and q having the property that there are no points $x, y, x \neq y$, such that all paths from x to p as well as all paths from x to q contain y.)
A. Adam
$9 \quad$ Given a positive, monotone function $F(x)$ on $(0, \infty)$ such that $F(x) / x$ is monotone nondecreasing and $F(x) / x^{1+d}$ is monotone nonincreasing for some positive d, let $\lambda_{n}>0$ and $a_{n} \geq 0, n \geq$ 1. Prove that if

$$
\sum_{n=1}^{\infty} \lambda_{n} F\left(a_{n} \sum_{k=1}^{n} \frac{\lambda_{k}}{\lambda_{n}}\right)<\infty
$$

or

$$
\sum_{n=1}^{\infty} \lambda_{n} F\left(\sum_{k=1}^{n} a_{k} \frac{\lambda_{k}}{\lambda_{n}}\right)<\infty
$$

then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
L. Leindler

10 Let $\left\{\phi_{n}(x)\right\}$ be a sequence of functions belonging to $L^{2}(0,1)$ and having norm less that 1 such that for any subsequence $\left\{\phi_{n_{k}}(x)\right\}$ the measure of the set

$$
\left\{x \in(0,1):\left|\frac{1}{\sqrt{N}} \sum_{k=1}^{N} \phi_{n_{k}}(x)\right| \geq y\right\}
$$

tends to 0 as y and N tend to infinity. Prove that ϕ_{n} tends to 0 weakly in the function space $L^{2}(0,1)$.

F. Moricz

11 Let C be a simple arc with monotone curvature such that C is congruent to its evolute. Show that under appropriate differentiability conditions, C is a part of a cycloid or a logarithmic spiral with polar equation $r=a e^{\vartheta}$.
J. Szenthe

