

AoPS Community

Mikls Schweitzer 1972

www.artofproblemsolving.com/community/c3706 by ehsan2004

1 Let \mathcal{F} be a nonempty family of sets with the following properties:

(a) If $X \in \mathcal{F}$, then there are some $Y \in \mathcal{F}$ and $Z \in \mathcal{F}$ such that $Y \cap Z = \emptyset$ and $Y \cup Z = X$.

(b) If $X \in \mathcal{F}$, and $Y \cup Z = X, Y \cap Z = \emptyset$, then either $Y \in \mathcal{F}$ or $Z \in \mathcal{F}$.

Show that there is a decreasing sequence $X_0 \supseteq X_1 \supseteq X_2 \supseteq \dots$ of sets $X_n \in \mathcal{F}$ such that

$$\bigcap_{n=0}^{\infty} X_n = \emptyset.$$

F. Galvin

2 Let \leq be a reflexive, antisymmetric relation on a finite set A. Show that this relation can be extended to an appropriate finite superset B of A such that \leq on B remains reflexive, antisymmetric, and any two elements of B have a least upper bound as well as a greatest lower bound. (The relation \leq is extended to B if for $x, y \in A, x \leq y$ holds in A if and only if it holds in B.)

E. Freid

3 Let λ_i (i = 1, 2, ...) be a sequence of distinct positive numbers tending to infinity. Consider the set of all numbers representable in the form

$$\mu = \sum_{i=1}^{\infty} n_i \lambda_i,$$

where $n_i \ge 0$ are integers and all but finitely many n_i are 0. Let

$$L(x) = \sum_{\lambda_i \le x} 1$$
 and $M(x) = \sum_{\mu \le x} 1$.

(In the latter sum, each μ occurs as many times as its number of representations in the above form.) Prove that if

$$\lim_{x \to \infty} \frac{L(x+1)}{L(x)} = 1,$$

then

$$\lim_{x \to \infty} \frac{M(x+1)}{M(x)} = 1$$

G. Halasz

4 Let *G* be a solvable torsion group in which every Abelian subgroup is finitely generated. Prove that *G* is finite.

J. Pelikan

5 We say that the real-valued function f(x) defined on the interval (0,1) is approximately continuous on (0,1) if for any $x_0 \in (0,1)$ and $\varepsilon > 0$ the point x_0 is a point of interior density 1 of the set

$$H = \{ x : |f(x) - f(x_0)| < \varepsilon \}.$$

Let $F \subset (0,1)$ be a countable closed set, and g(x) a real-valued function defined on F. Prove the existence of an approximately continuous function f(x) defined on (0,1) such that

$$f(x) = g(x)$$
 for all $x \in F$.

M. Laczkovich, Gy. Petruska

6 Let P(z) be a polynomial of degree n with complex coefficients,

P(0) = 1, and $|P(z)| \le M$ for $|z| \le 1$.

Prove that every root of P(z) in the closed unit disc has multiplicity at most $c\sqrt{n}$, where c = c(M) > 0 is a constant depending only on M.

G. Halasz

7 Let f(x, y, z) be a nonnegative harmonic function in the unit ball of \mathbb{R}^3 for which the inequality $f(x_0, 0, 0) \leq \varepsilon^2$ holds for some $0 \leq x_0 \leq 1$ and $0 < \varepsilon < (1 - x_0)^2$. Prove that $f(x, y, z) \leq \varepsilon$ in the ball with center at the origin an radius $(1 - 3\varepsilon^{1/4})$.

P. Turan

8 Given four points A_1, A_2, A_3, A_4 in the plane in such a way that A_4 is the centroid of the $\triangle A_1 A_2 A_3$, find a point A_5 in the plane that maximizes the ratio

 $\frac{\min_{1 \le i < j < k \le 5} T(A_i A_j A_k)}{\max_{1 \le i < j < k \le 5} T(A_i A_j A_k)}.$

(T(ABC) denotes the area of the triangle $\triangle ABC$.)

J. Suranyi

AoPS Community

9 Let *K* be a compact convex body in the *n*-dimensional Euclidean space. Let $P_1, P_2, ..., P_{n+1}$ be the vertices of a simplex having maximal volume among all simplices inscribed in *K*. Define the points $P_{n+2}, P_{n+3}, ...$ successively so that P_k (k > n + 1) is a point of *K* for which the volume of the convex hull of $P_1, ..., P_k$ is maximal. Denote this volume by V_k . Decide, for different values of *n*, about the truth of the statement "the sequence $V_{n+1}, V_{n+2}, ...$ is concave."

L. Fejes- Toth, E. Makai

10 Let \mathcal{T}_1 and \mathcal{T}_2 be second-countable topologies on the set *E*. We would like to find a real function σ defined on $E \times E$ such that

$$0 \le \sigma(x, y) < +\infty, \ \sigma(x, x) = 0 ,$$

 $\sigma(x,z) \le \sigma(x,y) + \sigma(y,z) \ (x,y,z \in E) \ ,$

and, for any $p \in E$, the sets

$$V_1(p,\varepsilon) = \{x : \sigma(x,p) < \varepsilon\} \ (\varepsilon > 0)$$

form a neighborhood base of p with respect to T_1 , and the sets

$$V_2(p,\varepsilon) = \{x : \sigma(p,x) < \varepsilon \} (\varepsilon > 0)$$

form a neighborhood base of p with respect to \mathcal{T}_2 . Prove that such a function σ exists if and only if, for any $p \in E$ and \mathcal{T}_i -open set $G \ni p$ (i = 1, 2), there exist a \mathcal{T}_i -open set G' and a \mathcal{T}_{3-i} -closed set F with $p \in G' \subset F \subset G$.

A. Csaszar

11 We throw N balls into n urns, one by one, independently and uniformly. Let $X_i = X_i(N, n)$ be the total number of balls in the *i*th urn. Consider the random variable

the *i*th urn. Consider the random variable

$$y(N,n) = \min_{1 \le i \le n} |X_i - \frac{N}{n}|.$$

Verify the following three statements:

(a) If $n \to \infty$ and $N/n^3 \to \infty$, then

$$P\left(\frac{y(N,n)}{\frac{1}{n}\sqrt{\frac{N}{n}}} < x\right) \to 1 - e^{-x\sqrt{2/\pi}} \text{ for all } x > 0.$$

(b) If $n \to \infty$ and $N/n^3 \le K$ (K constant), then for any $\varepsilon > 0$ there is an A > 0 such that

$$P(y(N,n) < A) > 1 - \varepsilon.$$

(c) If $n \to \infty$ and $N/n^3 \to 0$ then

 $P(y(N,n) < 1) \to 1.$

P. Revesz

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.