AoPS Community

Mikls Schweitzer 1972

www.artofproblemsolving.com/community/c3706
by ehsan2004

1 Let \mathcal{F} be a nonempty family of sets with the following properties:
(a) If $X \in \mathcal{F}$, then there are some $Y \in \mathcal{F}$ and $Z \in \mathcal{F}$ such that $Y \cap Z=\emptyset$ and $Y \cup Z=X$.
(b) If $X \in \mathcal{F}$, and $Y \cup Z=X, Y \cap Z=\emptyset$, then either $Y \in \mathcal{F}$ or $Z \in \mathcal{F}$.

Show that there is a decreasing sequence $X_{0} \supseteq X_{1} \supseteq X_{2} \supseteq \ldots$ of sets $X_{n} \in \mathcal{F}$ such that

$$
\bigcap_{n=0}^{\infty} X_{n}=\emptyset
$$

F. Galvin

2 Let \leq be a reflexive, antisymmetric relation on a finite set A. Show that this relation can be extended to an appropriate finite superset B of A such that \leq on B remains reflexive, antisymmetric, and any two elements of B have a least upper bound as well as a greatest lower bound. (The relation \leq is extended to B if for $x, y \in A, x \leq y$ holds in A if and only if it holds in B.)

E. Freid

3 Let $\lambda_{i}(i=1,2, \ldots)$ be a sequence of distinct positive numbers tending to infinity. Consider the set of all numbers representable in the form

$$
\mu=\sum_{i=1}^{\infty} n_{i} \lambda_{i},
$$

where $n_{i} \geq 0$ are integers and all but finitely many n_{i} are 0 . Let

$$
L(x)=\sum_{\lambda_{i} \leq x} 1 \text { and } M(x)=\sum_{\mu \leq x} 1 .
$$

(In the latter sum, each μ occurs as many times as its number of representations in the above form.) Prove that if

$$
\lim _{x \rightarrow \infty} \frac{L(x+1)}{L(x)}=1
$$

then

$$
\lim _{x \rightarrow \infty} \frac{M(x+1)}{M(x)}=1 .
$$

G. Halasz

4 Let G be a solvable torsion group in which every Abelian subgroup is finitely generated. Prove that G is finite.

J. Pelikan

5 We say that the real-valued function $f(x)$ defined on the interval $(0,1)$ is approximately continuous on $(0,1)$ if for any $x_{0} \in(0,1)$ and $\varepsilon>0$ the point x_{0} is a point of interior density 1 of the set

$$
H=\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\} .
$$

Let $F \subset(0,1)$ be a countable closed set, and $g(x)$ a real-valued function defined on F. Prove the existence of an approximately continuous function $f(x)$ defined on $(0,1)$ such that

$$
f(x)=g(x) \text { for all } x \in F .
$$

M. Laczkovich, Gy. Petruska

6 Let $P(z)$ be a polynomial of degree n with complex coefficients,

$$
P(0)=1, \text { and }|P(z)| \leq M \text { for }|z| \leq 1
$$

Prove that every root of $P(z)$ in the closed unit disc has multiplicity at most $c \sqrt{n}$, where $c=$ $c(M)>0$ is a constant depending only on M.

G. Halasz

7 Let $f(x, y, z)$ be a nonnegative harmonic function in the unit ball of \mathbb{R}^{3} for which the inequality $f\left(x_{0}, 0,0\right) \leq \varepsilon^{2}$ holds for some $0 \leq x_{0} \leq 1$ and $0<\varepsilon<\left(1-x_{0}\right)^{2}$. Prove that $f(x, y, z) \leq \varepsilon$ in the ball with center at the origin an radius $\left(1-3 \varepsilon^{1 / 4}\right)$.
P. Turan

8 Given four points $A_{1}, A_{2}, A_{3}, A_{4}$ in the plane in such a way that A_{4} is the centroid of the $\triangle A_{1} A_{2} A_{3}$, find a point A_{5} in the plane that maximizes the ratio

$$
\frac{\min _{1 \leq i<j<k \leq 5} T\left(A_{i} A_{j} A_{k}\right)}{\max _{1 \leq i<j<k \leq 5} T\left(A_{i} A_{j} A_{k}\right)} .
$$

($T(A B C$) denotes the area of the triangle $\triangle A B C$.)

J. Suranyi

9 Let K be a compact convex body in the n-dimensional Euclidean space. Let $P_{1}, P_{2}, \ldots, P_{n+1}$ be the vertices of a simplex having maximal volume among all simplices inscribed in K. Define the points P_{n+2}, P_{n+3}, \ldots successively so that $P_{k}(k>n+1)$ is a point of K for which the volume of the convex hull of P_{1}, \ldots, P_{k} is maximal. Denote this volume by V_{k}. Decide, for different values of n, about the truth of the statement "the sequence V_{n+1}, V_{n+2}, \ldots is concave."

L. Fejes- Toth, E. Makai

10 Let \mathcal{T}_{1} and \mathcal{T}_{2} be second-countable topologies on the set E. We would like to find a real function σ defined on $E \times E$ such that

$$
\begin{gathered}
0 \leq \sigma(x, y)<+\infty, \sigma(x, x)=0 \\
\sigma(x, z) \leq \sigma(x, y)+\sigma(y, z)(x, y, z \in E)
\end{gathered}
$$

and, for any $p \in E$, the sets

$$
V_{1}(p, \varepsilon)=\{x: \sigma(x, p)<\varepsilon\}(\varepsilon>0)
$$

form a neighborhood base of p with respect to \mathcal{T}_{1}, and the sets

$$
V_{2}(p, \varepsilon)=\{x: \sigma(p, x)<\varepsilon\}(\varepsilon>0)
$$

form a neighborhood base of p with respect to \mathcal{T}_{2}. Prove that such a function σ exists if and only if, for any $p \in E$ and \mathcal{T}_{i}-open set $G \ni p(i=1,2)$, there exist a \mathcal{T}_{i}-open set G^{\prime} and a $\mathcal{T}_{3-i^{-}}$ closed set F with $p \in G^{\prime} \subset F \subset G$.
A. Csaszar

11 We throw N balls into n urns, one by one, independently and uniformly. Let $X_{i}=X_{i}(N, n)$ be the total number of balls in the i th urn. Consider the random variable

$$
y(N, n)=\min _{1 \leq i \leq n}\left|X_{i}-\frac{N}{n}\right| .
$$

Verify the following three statements:
(a) If $n \rightarrow \infty$ and $N / n^{3} \rightarrow \infty$, then

$$
P\left(\frac{y(N, n)}{\frac{1}{n} \sqrt{\frac{N}{n}}}<x\right) \rightarrow 1-e^{-x \sqrt{2 / \pi}} \text { for all } x>0
$$

(b) If $n \rightarrow \infty$ and $N / n^{3} \leq K$ (K constant), then for any $\varepsilon>0$ there is an $A>0$ such that

$$
P(y(N, n)<A)>1-\varepsilon .
$$

(c) If $n \rightarrow \infty$ and $N / n^{3} \rightarrow 0$ then

$$
P(y(N, n)<1) \rightarrow 1 .
$$

P. Revesz

