AoPS Community

Mikls Schweitzer 1973

www.artofproblemsolving.com/community/c3707
by ehsan2004

1 We say that the rank of a group G is at most r if every subgroup of G can be generated by at most r elements. Prove
that here exists an integer s such that for every finite group G of rank 2 the commutator series of G has length less than s.

J. Erdos

2 Let R be an Artinian ring with unity. Suppose that every idempotent element of R commutes with every element of R whose square is 0 . Suppose R is the sum of the ideals A and B. Prove that $A B=B A$.

A. Kertesz

3 Find a constant $c>1$ with the property that, for arbitrary positive integers n and k such that $n>c^{k}$, the number of distinct prime factors of $\binom{n}{k}$ is at least k.

P. Erdos

4 Let $f(n)$ be that largest integer k such that n^{k} divides n !, and let $F(n)=\max _{2 \leq m \leq n} f(m)$. Show that

$$
\lim _{n \rightarrow \infty} \frac{F(n) \log n}{n \log \log n}=1
$$

P. Erdos

$5 \quad$ Verify that for every $x>0$,

$$
\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}>\log x .
$$

P. Medgyessy

6 If f is a nonnegative, continuous, concave function on the closed interval $[0,1]$ such that $f(0)=$ 1 , then

$$
\int_{0}^{1} x f(x) d x \leq \frac{2}{3}\left[\int_{0}^{1} f(x) d x\right]^{2}
$$

Z. Daroczy

7 Let us connect consecutive vertices of a regular heptagon inscribed in a unit circle by connected subsets (of the plane of the circle) of diameter less than 1 . Show that every continuum (in the plane of the circle) of diameter greater than 4, containing the center of the circle, intersects one of these connected sets.

M. Bognar

8 What is the radius of the largest disc that can be covered by a finite number of closed discs of radius 1 in such a way that each disc intersects at most three others?

L. Fejes-Toth

9 Determine the value of

$$
\sup _{1 \leq \xi \leq 2}[\log E \xi-E \log \xi],
$$

where ξ is a random variable and E denotes expectation.

Z. Daroczy

10 Find the limit distribution of the sequence η_{n} of random variables with distribution

$$
P\left(\eta_{n}=\arccos \left(\cos ^{2} \frac{(2 j-1) \pi}{2 n}\right)\right)=\frac{1}{n}(j=1,2, \ldots, n) .
$$

($\arccos ($.$) denotes the main value.)$
B. Gyires

