

AoPS Community

Mikls Schweitzer 1974

www.artofproblemsolving.com/community/c3708 by ehsan2004

1 Let \mathcal{F} be a family of subsets of a ground set X such that $\bigcup_{F \in \mathcal{F}} F = X$, and

(a) if $A, B \in \mathcal{F}$, then $A \cup B \subseteq C$ for some $C \in \mathcal{F}$;

(b) if $A_n \in \mathcal{F}$ (n = 0, 1, ...), $B \in \mathcal{F}$, and $A_0 \subset A_1 \subset ...$, then, for some $k \ge 0$, $A_n \cap B = A_k \cap B$ for all $n \ge k$.

Show that there exist pairwise disjoint sets X_{γ} ($\gamma \in \Gamma$), with $X = \bigcup \{X_{\gamma} : \gamma \in \Gamma \}$, such that every X_{γ} is contained in some member of \mathcal{F} , and every element of \mathcal{F} is contained in the union of finitely many X_{γ} 's.

A. Hajnal

2 Let *G* be a 2-connected nonbipartite graph on 2n vertices. Show that the vertex set of *G* can be split into two classes of *n* elements such that the edges joining the two classes form a connected, spanning subgraph.

L. Lovasz

3 Prove that a necessary and sufficient for the existence of a set $S \subset \{1, 2, ..., n\}$ with the property that the integers 0, 1, ..., n - 1 all have an odd number of representations in the form $x - y, x, y \in S$, is that (2n - 1) has a multiple of the form $2.4^k - 1$

L. Lovasz, J. Pelikan

4 Let *R* be an infinite ring such that every subring of *R* different from {0} has a finite index in *R*. (By the index of a subring, we mean the index of its additive group in the additive group of *R*.) Prove that the additive group of *R* is cyclic.

L. Lovasz, J. Pelikan

5 Let $\{f_n\}_{n=0}^{\infty}$ be a uniformly bounded sequence of real-valued measurable functions defined on [0, 1] satisfying

$$\int_0^1 f_n^2 = 1.$$

AoPS Community

Further, let $\{c_n\}$ be a sequence of real numbers with

$$\sum_{n=0}^{\infty} c_n^2 = +\infty.$$

Prove that some re-arrangement of the series $\sum_{n=0}^{\infty} c_n f_n$ is divergent on a set of positive measure.

J. Komlos

6 Let $f(x) = \sum_{n=1}^{\infty} a_n / (x + n^2)$, $(x \ge 0)$, where $\sum_{n=1}^{\infty} |a_n| n^{-\alpha} < \infty$ for some $\alpha > 2$. Let us assume that for some $\beta > 1/\alpha$, we have $f(x) = O(e^{-x^{\beta}})$ as $x \to \infty$. Prove that a_n is identically 0.

G. Halasz

7 Given a positive integer m and $0 < \delta < \pi$, construct a trigonometric polynomial $f(x) = a_0 + \sum_{n=1}^{m} (a_n \cos nx + b_n \sin nx)$ of degree m such that $f(0) = 1, \int_{\delta \le |x| \le \pi} |f(x)| dx \le c/m$, and $\max_{-\pi \le x \le \pi} |f'(x)| \le c/\delta$, for some universal constant c.

G. Halasz

8 Prove that there exists a topological space *T* containing the real line as a subset, such that the Lebesgue-measurable functions, and only those, extend continuously over *T*. Show that the real line cannot be an everywhere-dense subset of such a space *T*.

A. Csaszar

9 Let *A* be a closed and bounded set in the plane, and let *C* denote the set of points at a unit distance from *A*. Let $p \in C$, and assume that the intersection of *A* with the unit circle *K* centered at *p* can be covered by an arc shorter that a semicircle of *K*. Prove that the intersection of *C* with a suitable neighborhood of *p* is a simple arc which *p* is not an endpoint.

M. Bognar

10 Let μ and ν be two probability measures on the Borel sets of the plane. Prove that there are random variables $\xi_1, \xi_2, \eta_1, \eta_2$ such that

(a) the distribution of (ξ_1, ξ_2) is μ and the distribution of (η_1, η_2) is ν ,

(b) $\xi_1 \leq \eta_1, \xi_2 \leq \eta_2$ almost everywhere, if an only if $\mu(G) \geq \nu(G)$ for all sets of the form $G = \bigcup_{i=1}^k (-\infty, x_i) \times (-\infty, y_i)$.

P. Major

1974 Mikls Schweitzer

AOPS Online ORDER AOPS Academy ORDER AOPS CALLED Art of Problem Solving is an ACS WASC Accredited School.