AoPS Community

Mikls Schweitzer 1974

www.artofproblemsolving.com/community/c3708
by ehsan2004

1 Let \mathcal{F} be a family of subsets of a ground set X such that $\cup_{F \in \mathcal{F}} F=X$, and
(a) if $A, B \in \mathcal{F}$, then $A \cup B \subseteq C$ for some $C \in \mathcal{F}$;
(b) if $A_{n} \in \mathcal{F}(n=0,1, \ldots), B \in \mathcal{F}$, and $A_{0} \subset A_{1} \subset \ldots$, then, for some $k \geq 0, A_{n} \cap B=A_{k} \cap B$ for all $n \geq k$.

Show that there exist pairwise disjoint sets $X_{\gamma}(\gamma \in \Gamma)$, with $X=\cup\left\{X_{\gamma}: \gamma \in \Gamma\right\}$, such that every X_{γ} is contained in some member of \mathcal{F}, and every element of \mathcal{F} is contained in the union of finitely many X_{γ} 's.

A. Hajnal

2 Let G be a 2-connected nonbipartite graph on $2 n$ vertices. Show that the vertex set of G can be split into two classes of n elements such that the edges joining the two classes form a connected, spanning subgraph.
L. Lovasz

3 Prove that a necessary and sufficient for the existence of a set $S \subset\{1,2, \ldots, n\}$ with the property that the integers $0,1, \ldots, n-1$ all have an odd number of representations in the form $x-y, x, y \in S$, is that $(2 n-1)$ has a multiple of the form $2.4^{k}-1$

L. Lovasz, J. Pelikan

$4 \quad$ Let R be an infinite ring such that every subring of R different from $\{0\}$ has a finite index in R. (By the index of a subring, we mean the index of its additive group in the additive group of R.) Prove that the additive group of R is cyclic.

L. Lovasz, J. Pelikan

5 Let $\left\{f_{n}\right\}_{n=0}^{\infty}$ be a uniformly bounded sequence of real-valued measurable functions defined on $[0,1]$ satisfying

$$
\int_{0}^{1} f_{n}^{2}=1
$$

Further, let $\left\{c_{n}\right\}$ be a sequence of real numbers with

$$
\sum_{n=0}^{\infty} c_{n}^{2}=+\infty
$$

Prove that some re-arrangement of the series $\sum_{n=0}^{\infty} c_{n} f_{n}$ is divergent on a set of positive measure.

J. Komlos

6 Let $f(x)=\sum_{n=1}^{\infty} a_{n} /\left(x+n^{2}\right),(x \geq 0)$, where $\sum_{n=1}^{\infty}\left|a_{n}\right| n^{-\alpha}<\infty$ for some $\alpha>2$. Let us assume that for some $\beta>1 / \alpha$, we have $f(x)=O\left(e^{-x^{\beta}}\right)$ as $x \rightarrow \infty$. Prove that a_{n} is identically 0.
G. Halasz

7 Given a positive integer m and $0<\delta<\pi$, construct a trigonometric polynomial $f(x)=$ $a_{0}+\sum_{n=1}^{m}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ of degree m such that $f(0)=1, \int_{\delta \leq|x| \leq \pi}|f(x)| d x \leq c / m$, and $\max _{-\pi \leq x \leq \pi}\left|f^{\prime}(x)\right| \leq c / \delta$, for some universal constant c.

G. Halasz

8 Prove that there exists a topological space T containing the real line as a subset, such that the Lebesgue-measurable functions, and only those, extend continuously over T. Show that the real line cannot be an everywhere-dense subset of such a space T.
A. Csaszar

9 Let A be a closed and bounded set in the plane, and let C denote the set of points at a unit distance from A. Let $p \in C$, and assume that the intersection of A with the unit circle K centered at p can be covered by an arc shorter that a semicircle of K. Prove that the intersection of C with a suitable neighborhood of p is a simple arc which p is not an endpoint.

M. Bognar

10 Let μ and ν be two probability measures on the Borel sets of the plane. Prove that there are random variables $\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}$ such that
(a) the distribution of $\left(\xi_{1}, \xi_{2}\right)$ is μ and the distribution of $\left(\eta_{1}, \eta_{2}\right)$ is ν,
(b) $\xi_{1} \leq \eta_{1}, \xi_{2} \leq \eta_{2}$ almost everywhere, if an only if $\mu(G) \geq \nu(G)$ for all sets of the form $G=\cup_{i=1}^{k}\left(-\infty, x_{i}\right) \times\left(-\infty, y_{i}\right)$.
P. Major

