AoPS Community

Mikls Schweitzer 1975

www.artofproblemsolving.com/community/c3709
by ehsan2004

1 Show that there exists a tournament (T, \rightarrow) of cardinality \aleph_{1} containing no transitive subtournament of size \aleph_{1}. (A structure (T, \rightarrow) is a tournament if \rightarrow is a binary, irreflexive, asymmetric and trichotomic relation. The tournament (T, \rightarrow) is transitive if \rightarrow is transitive, that is, if it orders T.)

A. Hajnal

2 Let \mathcal{A}_{n} denote the set of all mappings $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that $f^{-1}(i):=$ $\{k: f(k)=i\} \neq \varnothing$ implies $f^{-1}(j) \neq \varnothing, j \in\{1,2, \ldots, i\}$. Prove

$$
\left|\mathcal{A}_{n}\right|=\sum_{k=0}^{\infty} \frac{k^{n}}{2^{k+1}} .
$$

L. Lovasz

3 Let S be a semigroup without proper two-sided ideals and suppose that for every $a, b \in S$ at least one of the products $a b$ and $b a$ is equal to one of the elements a, b. Prove that either $a b=a$ for all $a, b \in S$ or $a b=b$ for all $a, b \in S$.

L. Megyesi

4 Prove that the set of rational-valued, multiplicative arithmetical functions and the set of complex rational-valued, multiplicative arithmetical functions form isomorphic groups with the convolution operation $f \circ g$ defined by

$$
(f \circ g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) .
$$

(We call a complex number complex rational, if its real and imaginary parts are both rational.)

B. Csakany

5 Let $\left\{f_{n}\right\}$ be a sequence of Lebesgue-integrable functions on $[0,1]$ such that for any Lebesguemeasurable subset E of $[0,1]$ the sequence $\int_{E} f_{n}$ is convergent. Assume also that $\lim _{n} f_{n}=f$ exists almost everywhere. Prove that f is integrable and $\int_{E} f=\lim _{n} \int_{E} f_{n}$. Is the assertion also true if E runs only over intervals but we also assume $f_{n} \geq 0$? What happens if $[0,1]$ is replaced by $[0,+\infty)$?

J. Szucs

$6 \quad$ Let f be a differentiable real function and let M be a positive real number. Prove that if

$$
|f(x+t)-2 f(x)+f(x-t)| \leq M t^{2} \text { for all } x \text { and } t
$$

then

$$
\left|f^{\prime}(x+t)-f^{\prime}(x)\right| \leq M|t| .
$$

J. Szabados

7 Let $a<a^{\prime}<b<b^{\prime}$ be real numbers and let the real function f be continuous on the interval [$\left.a, b^{\prime}\right]$ and differentiable in its interior. Prove that there exist $c \in(a, b), c^{\prime} \in\left(a^{\prime}, b^{\prime}\right)$ such that

$$
\begin{aligned}
f(b)-f(a) & =f^{\prime}(c)(b-a), \\
f\left(b^{\prime}\right)-f\left(a^{\prime}\right) & =f^{\prime}\left(c^{\prime}\right)\left(b^{\prime}-a^{\prime}\right),
\end{aligned}
$$

and $c<c^{\prime}$.

B. Szokefalvi Nagy

8 Prove that if

$$
\sum_{n=1}^{m} a_{n} \leq N a_{m}(m=1,2, \ldots)
$$

holds for a sequence $\left\{a_{n}\right\}$ of nonnegative real numbers with some positive integer N, then $\alpha_{i+p} \geq p \alpha_{i}$ for $i, p=1,2, \ldots$, where

$$
\alpha_{i}=\sum_{n=(i-1) N+1}^{i N} a_{n}(i=1,2, \ldots) .
$$

L. Leindler

9 Let l_{0}, c, α, g be positive constants, and let $x(t)$ be the solution of the differential equation

$$
\left(\left[l_{0}+c t^{\alpha}\right]^{2} x^{\prime}\right)^{\prime}+g\left[l_{0}+c t^{\alpha}\right] \sin x=0, t \geq 0,-\frac{\pi}{2}<x<\frac{\pi}{2},
$$

satisfying the initial conditions $x\left(t_{0}\right)=x_{0}, x^{\prime}\left(t_{0}\right)=0$. (This is the equation of the mathematical pendulum whose length changes according to the law $l=l_{0}+c t^{\alpha}$.) Prove that $x(t)$ is defined on the interval $\left[t_{0}, \infty\right)$; furthermore, if $\alpha>2$ then for every $x_{0} \neq 0$ there exists a t_{0} such that

$$
\liminf _{t \rightarrow \infty}|x(t)|>0
$$

L. Hatvani

10 Prove that an idempotent linear operator of a Hilbert space is self-adjoint if and only if it has norm 0 or 1.

J. Szucs

11 Let $X_{1}, X_{2}, \ldots, X_{n}$ be (not necessary independent) discrete random variables. Prove that there exist at least $n^{2} / 2$ pairs (i, j) such that

$$
H\left(X_{i}+X_{j}\right) \geq \frac{1}{3} \min _{1 \leq k \leq n}\left\{H\left(X_{k}\right)\right\}
$$

where $H(X)$ denotes the Shannon entropy of X.
GY. Katona
12 Assume that a face of a convex polyhedron P has a common edge with every other face. Show that there exists a simple closed polygon that consists of edges of P and passes through all vertices.
L.Lovasz

