

AoPS Community

Mikls Schweitzer 1975

www.artofproblemsolving.com/community/c3709 by ehsan2004

1 Show that there exists a tournament (T, \rightarrow) of cardinality \aleph_1 containing no transitive subtournament of size \aleph_1 . (A structure (T, \rightarrow) is a *tournament* if \rightarrow is a binary, irreflexive, asymmetric and trichotomic relation. The tournament (T, \rightarrow) is transitive if \rightarrow is transitive, that is, if it orders *T*.)

A. Hajnal

2 Let \mathcal{A}_n denote the set of all mappings $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ such that $f^{-1}(i) := \{k: f(k) = i\} \neq \emptyset$ implies $f^{-1}(j) \neq \emptyset, j \in \{1, 2, ..., i\}$. Prove

$$|\mathcal{A}_n| = \sum_{k=0}^{\infty} \frac{k^n}{2^{k+1}}.$$

L. Lovasz

3 Let *S* be a semigroup without proper two-sided ideals and suppose that for every $a, b \in S$ at least one of the products ab and ba is equal to one of the elements a, b. Prove that either ab = a for all $a, b \in S$ or ab = b for all $a, b \in S$.

L. Megyesi

4 Prove that the set of rational-valued, multiplicative arithmetical functions and the set of complex rational-valued, multiplicative arithmetical functions form isomorphic groups with the convolution operation $f \circ g$ defined by

$$(f \circ g)(n) = \sum_{d|n} f(d)g(\frac{n}{d}).$$

(We call a complex number *complex rational*, if its real and imaginary parts are both rational.)

B. Csakany

5 Let $\{f_n\}$ be a sequence of Lebesgue-integrable functions on [0, 1] such that for any Lebesguemeasurable subset E of [0, 1] the sequence $\int_E f_n$ is convergent. Assume also that $\lim_n f_n = f$ exists almost everywhere. Prove that f is integrable and $\int_E f = \lim_n \int_E f_n$. Is the assertion also true if E runs only over intervals but we also assume $f_n \ge 0$? What happens if [0, 1] is replaced by $[0, +\infty)$?

AoPS Community

6	Let f be a differentiable real function and let M be a positive real number. Prove that if
	$ f(x+t) - 2f(x) + f(x-t) \le Mt^2$ for all x and t,
	then
	$ f'(x+t) - f'(x) \le M t .$
	J. Szabados
7	Let $a < a' < b < b'$ be real numbers and let the real function f be continuous on the interva $[a, b']$ and differentiable in its interior. Prove that there exist $c \in (a, b), c' \in (a', b')$ such that
	f(b) - f(a) = f'(c)(b - a),
	f(b') - f(a') = f'(c')(b' - a'),
	and $c < c'$.
	B. Szokefalvi Nagy
8	Prove that if $\sum_{n=1}^m a_n \leq N a_m \ (m=1,2,)$
	holds for a sequence $\{a_n\}$ of nonnegative real numbers with some positive integer N , the $\alpha_{i+p} \ge p\alpha_i$ for $i, p = 1, 2,,$ where
	$\alpha_i = \sum_{n=(i-1)N+1}^{iN} a_n \ (i = 1, 2,) \ .$
	L. Leindler
9	Let l_0, c, α, g be positive constants, and let $x(t)$ be the solution of the differential equation
	$([l_0 + ct^{\alpha}]^2 x')' + g[l_0 + ct^{\alpha}]\sin x = 0, \ t \ge 0, \ -\frac{\pi}{2} < x < \frac{\pi}{2},$
	matical pendulum whose length changes according to the law $l = l_0 + ct^{\alpha}$.) Prove that $x(t)$ i defined on the interval $[t_0, \infty)$; furthermore, if $\alpha > 2$ then for every $x_0 \neq 0$ there exists a t_0 such that
	satisfying the initial conditions $x(t_0) = x_0$, $x'(t_0) = 0$. (This is the equation of the mathematical pendulum whose length changes according to the law $l = l_0 + ct^{\alpha}$.) Prove that $x(t)$ is defined on the interval $[t_0, \infty)$; furthermore, if $\alpha > 2$ then for every $x_0 \neq 0$ there exists a t_0 such that $\liminf_{t \to \infty} x(t) > 0$.

AoPS Community

10 Prove that an idempotent linear operator of a Hilbert space is self-adjoint if and only if it has norm 0 or 1.

J. Szucs

11 Let $X_1, X_2, ..., X_n$ be (not necessary independent) discrete random variables. Prove that there exist at least $n^2/2$ pairs (i, j) such that

$$H(X_i + X_j) \ge \frac{1}{3} \min_{1 \le k \le n} \{H(X_k)\},\$$

where H(X) denotes the Shannon entropy of X.

GY. Katona

12 Assume that a face of a convex polyhedron *P* has a common edge with every other face. Show that there exists a simple closed polygon that consists of edges of *P* and passes through all vertices.

L .Lovasz

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬