## AoPS Community

## Mikls Schweitzer 1976

www.artofproblemsolving.com/community/c3710
by ehsan2004

1 Assume that $R$, a recursive, binary relation on $\mathbb{N}$ (the set of natural numbers), orders $\mathbb{N}$ into type $\omega$. Show that if $f(n)$ is the $n$th element of this order, then $f$ is not necessarily recursive.

## L. Posa

2 Let $G$ be an infinite graph such that for any countably infinite vertex set $A$ there is a vertex $p$, not in $A$, joined to infinitely many elements of $A$. Show that $G$ has a countably infinite vertex set $A$ such that $G$ contains uncountably infinitely many vertices $p$ joined to infinitely many elements of $A$.

## P. Erdos, A. Hajnal

3 Let $H$ denote the set of those natural numbers for which $\tau(n)$ divides $n$, where $\tau(n)$ is the number of divisors of $n$. Show that
a) $n!\in H$ for all sufficiently large $n$,
b) $H$ has density 0 .

## P. Erdos

$4 \quad$ Let $\mathbb{Z}$ be the ring of rational integers. Construct an integral domain $I$ satisfying the following conditions:
a) $\mathbb{Z} \varsubsetneqq I$;
b) no element of $I-\mathbb{Z}$ (only in $I$ ) is algebraic over $\mathbb{Z}$ (that is, not a root of a polynomial with coefficients in $\mathbb{Z}$ );
c) I only has trivial endomorphisms.
E. Fried

5 Let $S_{\nu}=\sum_{j=1}^{n} b_{j} z_{j}^{\nu}(\nu=0, \pm 1, \pm 2, \ldots)$, where the $b_{j}$ are arbitrary and the $z_{j}$ are nonzero complex numbers. Prove that

$$
\left|S_{0}\right| \leq n \max _{0<|\nu| \leq n}\left|S_{\nu}\right| .
$$

G. Halasz

6 Let $0 \leq c \leq 1$, and let $\eta$ denote the order type of the set of rational numbers. Assume that with every rational number $r$ we associate a Lebesgue-measurable subset $H_{r}$ of measure $c$ of the interval $[0,1]$. Prove the existence of a Lebesgue-measurable set $H \subset[0,1]$ of measure $c$ such that for every $x \in H$ the set

$$
\left\{r: x \in H_{r}\right\}
$$

contains a subset of type $\eta$.

## M. Laczkovich

7 Let $f_{1}, f_{2}, \ldots, f_{n}$ be regular functions on a domain of the complex plane, linearly independent over the complex field. Prove that the functions $f_{i} \bar{f}_{k}, 1 \leq i, k \leq n$, are also linearly independent.

## L. Lempert

8 Prove that the set of all linearly combinations (with real coefficients) of the system of polynomials $\left\{x^{n}+x^{n^{2}}\right\}_{n=0}^{\infty}$ is dense in $C[0,1]$.

## J. Szabados

$9 \quad$ Let $D$ be a convex subset of the $n$-dimensional space, and suppose that $D^{\prime}$ is obtained from $D$ by applying a positive central dilatation and then a translation. Suppose also that the sum of the volumes of $D$ and $D^{\prime}$ is 1 , and $D \cap D^{\prime} \neq \emptyset$. Determine the supremum of the volume of the convex hull of $D \cup D^{\prime}$ taken for all such pairs of sets $D, D^{\prime}$.

## L. Fejes-Toth, E. Makai

10 Suppose that $\tau$ is a metrizable topology on a set $X$ of cardinality less than or equal to continuum. Prove that there exists a separable and metrizable topology on $X$ that is coarser that $\tau$.

## L. Juhasz

11 Let $\xi_{1}, \xi_{2}, \ldots$ be independent, identically distributed random variables with distribution

$$
P\left(\xi_{1}=-1\right)=P\left(\xi_{1}=1\right)=\frac{1}{2} .
$$

Write $S_{n}=\xi_{1}+\xi_{2}+\ldots+\xi_{n}(n=1,2, \ldots), \quad S_{0}=0$, and

$$
T_{n}=\frac{1}{\sqrt{n}} \max _{0 \leq k \leq n} S_{k}
$$

Prove that $\lim \inf _{n \rightarrow \infty}(\log n) T_{n}=0$ with probability one.

## P. Revesz

