

AoPS Community

Mikls Schweitzer 1976

www.artofproblemsolving.com/community/c3710 by ehsan2004

1 Assume that *R*, a recursive, binary relation on \mathbb{N} (the set of natural numbers), orders \mathbb{N} into type ω . Show that if f(n) is the *n*th element of this order, then *f* is not necessarily recursive.

L. Posa

2 Let *G* be an infinite graph such that for any countably infinite vertex set *A* there is a vertex *p*, not in *A*, joined to infinitely many elements of *A*. Show that *G* has a countably infinite vertex set *A* such that *G* contains uncountably infinitely many vertices *p* joined to infinitely many elements of *A*.

P. Erdos, A. Hajnal

3 Let *H* denote the set of those natural numbers for which $\tau(n)$ divides *n*, where $\tau(n)$ is the number of divisors of *n*. Show that

a) $n! \in H$ for all sufficiently large n,

b)H has density 0.

P. Erdos

4 Let \mathbb{Z} be the ring of rational integers. Construct an integral domain *I* satisfying the following conditions:

a) $\mathbb{Z} \subsetneqq I$;

b) no element of $I - \mathbb{Z}$ (only in *I*) is algebraic over \mathbb{Z} (that is, not a root of a polynomial with coefficients in \mathbb{Z});

c) I only has trivial endomorphisms.

E. Fried

5 Let $S_{\nu} = \sum_{j=1}^{n} b_j z_j^{\nu}$ ($\nu = 0, \pm 1, \pm 2, ...$), where the b_j are arbitrary and the z_j are nonzero complex numbers . Prove that

$$|S_0| \le n \max_{0 < |\nu| \le n} |S_{\nu}|.$$

G. Halasz

AoPS Community

6 Let $0 \le c \le 1$, and let η denote the order type of the set of rational numbers. Assume that with every rational number r we associate a Lebesgue-measurable subset H_r of measure c of the interval [0, 1]. Prove the existence of a Lebesgue-measurable set $H \subset [0, 1]$ of measure c such that for every $x \in H$ the set

$$\{r: x \in H_r\}$$

contains a subset of type η .

M. Laczkovich

7 Let f_1, f_2, \ldots, f_n be regular functions on a domain of the complex plane, linearly independent over the complex field. Prove that the functions $f_i \overline{f}_k$, $1 \le i, k \le n$, are also linearly independent.

L. Lempert

8 Prove that the set of all linearly combinations (with real coefficients) of the system of polynomials $\{x^n + x^{n^2}\}_{n=0}^{\infty}$ is dense in C[0, 1].

J. Szabados

9 Let *D* be a convex subset of the *n*-dimensional space, and suppose that *D'* is obtained from *D* by applying a positive central dilatation and then a translation. Suppose also that the sum of the volumes of *D* and *D'* is 1, and $D \cap D' \neq \emptyset$. Determine the supremum of the volume of the convex hull of $D \cup D'$ taken for all such pairs of sets D, D'.

L. Fejes-Toth, E. Makai

10 Suppose that τ is a metrizable topology on a set X of cardinality less than or equal to continuum. Prove that there exists a separable and metrizable topology on X that is coarser that τ .

L. Juhasz

11 Let $\xi_1, \xi_2, ...$ be independent, identically distributed random variables with distribution

$$P(\xi_1 = -1) = P(\xi_1 = 1) = \frac{1}{2}.$$

Write $S_n = \xi_1 + \xi_2 + \ldots + \xi_n \ (n = 1, 2, \ldots), \ S_0 = 0$, and

$$T_n = \frac{1}{\sqrt{n}} \max_{0 \le k \le n} S_k.$$

Prove that $\liminf_{n\to\infty} (\log n)T_n = 0$ with probability one.

P. Revesz

AoPS Community

1976 Mikls Schweitzer

AOPS Online ORDER AOPS Academy ORDER AOPS CALLER Art of Problem Solving is an ACS WASC Accredited School.