AoPS Community

Mikls Schweitzer 1977
www.artofproblemsolving.com/community/c3711
by ehsan2004

1 Consider the intersection of an ellipsoid with a plane σ passing through its center O. On the line through the point O perpendicular to σ, mark the two points at a distance from O equal to the area of the intersection. Determine the loci of the marked points as σ runs through all such planes.

L. Tamassy

2 Construct on the real projective plane a continuous curve, consisting of simple points, which is not a straight line and is intersected in a single point by every tangent and every secant of a given conic.

F. Karteszi

3 Prove that if a, x, y are p-adic integers different from 0 and $p|x, p a| x y$, then

$$
\frac{1}{y} \frac{(1+x)^{y}-1}{x} \equiv \frac{\log (1+x)}{x} \quad(\bmod a)
$$

L. Redei

4 Let $p>5$ be a prime number. Prove that every algebraic integer of the p th cyclotomic field can be represented as a sum of (finitely many) distinct units of the ring of algebraic integers of the field.

K. Gyory

5 Suppose that the automorphism group of the finite undirected graph $X=(P, E)$ is isomorphic to the quaternion group (of order 8). Prove that the adjacency matrix of X has an eigenvalue of multiplicity at least 4 .
($P=\{1,2, \ldots, n\}$ is the set of vertices of the graph X. The set of edges E is a subset of the set of all unordered pairs of elements of P. The group of automorphisms of X consists of those permutations of P that map edges to edges. The adjacency matrix $M=\left[m_{i j}\right]$ is the $n \times n$ matrix defined by $m_{i j}=1$ if $\{i, j\} \in E$ and $m_{i, j}=0$ otherwise.)
L. Babai

6 Let f be a real function defined on the positive half-axis for which $f(x y)=x f(y)+y f(x)$ and $f(x+1) \leq f(x)$ hold for every positive x and y. Show that if $f(1 / 2)=1 / 2$, then

$$
f(x)+f(1-x) \geq-x \log _{2} x-(1-x) \log _{2}(1-x)
$$

for every $x \in(0,1)$.
Z. Daroczy, Gy. Maksa

7 Let G be a locally compact solvable group, let c_{1}, \ldots, c_{n} be complex numbers, and assume that the complex-valued functions f and g on G satisfy

$$
\sum_{k=1}^{n} c_{k} f\left(x y^{k}\right)=f(x) g(y) \text { for all } x, y \in G .
$$

Prove that if f is a bounded function and

$$
\inf _{x \in G} \operatorname{Re} f(x) \chi(x)>0
$$

for some continuous (complex) character χ of G, then g is continuous.

L. Szekelyhidi

$8 \quad$ Let $p \geq 1$ be a real number and $\mathbb{R}_{+}=(0, \infty)$. For which continuous functions $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are following functions all convex?

$$
\begin{gathered}
M_{n}(x)=\left[\frac{\sum_{i=1}^{n} g\left(\frac{x_{i}}{x_{i+1}}\right) x_{i+1}^{p}}{\sum_{i=1}^{n} g\left(\frac{x_{i}}{x_{i+1}}\right)}\right]^{\frac{1}{p}}, \\
x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}_{+}^{n+1}, n=1,2, \ldots
\end{gathered}
$$

L. Losonczi

9 Suppose that the components of he vector $\mathbf{u}=\left(u_{0}, \ldots, u_{n}\right)$ are real functions defined on the closed interval $[a, b]$ with the property that every nontrivial linear combination of them has at most n zeros in $[a, b]$. Prove that if σ is an increasing function on $[a, b]$ and the rank of the operator

$$
A(f)=\int_{a}^{b} \mathbf{u}(x) f(x) d \sigma(x), f \in C[a, b],
$$

is $r \leq n$, then σ has exactly r points of increase.
E. Gesztelyi

10 Let the sequence of random variables $\left\{X_{m}, m \geq 0\right\}, X_{0}=0$, be an infinite random walk on the set of nonnegative integers with transition probabilities

$$
\begin{aligned}
& p_{i}=P\left(X_{m+1}=i+1 \mid X_{m}=i\right)>0, i \geq 0 \\
& q_{i}=P\left(X_{m+1}=i-1 \mid X_{m}=i\right)>0, i>0
\end{aligned}
$$

Prove that for arbitrary $k>0$ there is an $\alpha_{k}>1$ such that

$$
P_{n}(k)=P\left(\max _{0 \leq j \leq n} X_{j}=k\right)
$$

satisfies the limit relation

$$
\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{n=1}^{L} P_{n}(k) \alpha_{k}^{n}<\infty
$$

J. Tomko

