

AoPS Community

Mikls Schweitzer 1978

www.artofproblemsolving.com/community/c3712 by ehsan2004

1 Let \mathcal{H} be a family of finite subsets of an infinite set X such that every finite subset of X can be represented as the union of two disjoint sets from \mathcal{H} . Prove that for every positive integer kthere is a subset of X that can be represented in at least k different ways as the union of two disjoint sets from \mathcal{H} .

P. Erdos

2 For a distributive lattice *L*, consider the following two statements:

(A) Every ideal of L is the kernel of at least two different homomorphisms.

(B) L contains no maximal ideal.

Which one of these statements implies the other?

(Every homomorphism φ of L induces an equivalence relation on L: $a \sim b$ if and only if $a\varphi = b\varphi$. We do not consider two homomorphisms different if they imply the same equivalence relation.)

J. Varlet, E. Fried

3 Let $1 < a_1 < a_2 < \ldots < a_n < x$ be positive integers such that $\sum_{i=1}^n 1/a_i \le 1$. Let y denote the number of positive integers smaller that x not divisible by any of the a_i . Prove that

$$y > \frac{cx}{\log x}$$

with a suitable positive constant c (independent of x and the numbers a_i).

I. Z. Ruzsa

4 Let \mathbb{Q} and \mathbb{R} be the set of rational numbers and the set of real numbers, respectively, and let $f : \mathbb{Q} \to \mathbb{R}$ be a function with the following property. For every $h \in \mathbb{Q}$, $x_0 \in \mathbb{R}$,

$$f(x+h) - f(x) \to 0$$

as $x \in \mathbb{Q}$ tends to x_0 . Does it follow that f is bounded on some interval?

M. Laczkovich

AoPS Community

5 Suppose that $R(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ converges in a neighborhood of the unit circle $\{z : |z| = 1\}$ in the complex plane, and R(z) = P(z)/Q(z) is a rational function in this neighborhood, where P and Q are polynomials of degree at most k. Prove that there is a constant c independent of k such that

$$\sum_{n=-\infty}^{\infty} |a_n| \leq ck^2 \max_{|z|=1} |R(z)|.$$

H. S. Shapiro, G. Somorjai

6 Suppose that the function $g: (0,1) \to \mathbb{R}$ can be uniformly approximated by polynomials with nonnegative coefficients. Prove that g must be analytic. Is the statement also true for the interval (-1,0) instead of (0,1)?

J. Kalina, L. Lempert

7 Let *T* be a surjective mapping of the hyperbolic plane onto itself which maps collinear points into collinear points. Prove that *T* must be an isometry.

M. Bognar

8 Let X_1, \ldots, X_n be *n* points in the unit square (n > 1). Let r_i be the distance of X_i from the nearest point (other than X_i). Prove that the inequality

$$r_1^2 + \ldots + r_n^2 \le 4.$$

L. Fejes-Toth, E. Szemeredi

9 Suppose that all subspaces of cardinality at most \aleph_1 of a topological space are second-countable. Prove that the whole space is second-countable.

A. Hajnal, I. Juhasz

10 Let Y_n be a binomial random variable with parameters n and p. Assume that a certain set H of positive integers has a density and that this density is equal to d. Prove the following statements:

(a) $\lim_{n\to\infty} P(Y_n \in H) = d$ if H is an arithmetic progression.

- (b) The previous limit relation is not valid for arbitrary H.
- (c) If H is such that $P(Y_n \in H)$ is convergent, then the limit must be equal to d.
- L. Posa

1978 Mikls Schweitzer

Act of Problem Solving is an ACS WASC Accredited School.