AoPS Community

Mikls Schweitzer 1978

www.artofproblemsolving.com/community/c3712
by ehsan2004

1 Let \mathcal{H} be a family of finite subsets of an infinite set X such that every finite subset of X can be represented as the union of two disjoint sets from \mathcal{H}. Prove that for every positive integer k there is a subset of X that can be represented in at least k different ways as the union of two disjoint sets from \mathcal{H}.
P. Erdos

2 For a distributive lattice L, consider the following two statements:
(A) Every ideal of L is the kernel of at least two different homomorphisms.
(B) L contains no maximal ideal.

Which one of these statements implies the other?
(Every homomorphism φ of L induces an equivalence relation on $L: a \sim b$ if and only if $a \varphi=b \varphi$. We do not consider two homomorphisms different if they imply the same equivalence relation.)

J. Varlet, E. Fried

3 Let $1<a_{1}<a_{2}<\ldots<a_{n}<x$ be positive integers such that $\sum_{i=1}^{n} 1 / a_{i} \leq 1$. Let y denote the number of positive integers smaller that x not divisible by any of the a_{i}. Prove that

$$
y>\frac{c x}{\log x}
$$

with a suitable positive constant c (independent of x and the numbers a_{i}).

I. Z. Ruzsa

$4 \quad$ Let \mathbb{Q} and \mathbb{R} be the set of rational numbers and the set of real numbers, respectively, and let $f: \mathbb{Q} \rightarrow \mathbb{R}$ be a function with the following property. For every $h \in \mathbb{Q}, x_{0} \in \mathbb{R}$,

$$
f(x+h)-f(x) \rightarrow 0
$$

as $x \in \mathbb{Q}$ tends to x_{0}. Does it follow that f is bounded on some interval?
M. Laczkovich

5 Suppose that $R(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ converges in a neighborhood of the unit circle $\{z:|z|=1\}$ in the complex plane, and $R(z)=P(z) / Q(z)$ is a rational function in this neighborhood, where P and Q are polynomials of degree at most k. Prove that there is a constant c independent of k such that

$$
\sum_{n=-\infty}^{\infty}\left|a_{n}\right| \leq c k^{2} \max _{|z|=1}|R(z)| .
$$

H. S. Shapiro, G. Somorjai

6 Suppose that the function $g:(0,1) \rightarrow \mathbb{R}$ can be uniformly approximated by polynomials with nonnegative coefficients. Prove that g must be analytic. Is the statement also true for the interval $(-1,0)$ instead of $(0,1)$?

J. Kalina, L. Lempert

$7 \quad$ Let T be a surjective mapping of the hyperbolic plane onto itself which maps collinear points into collinear points. Prove that T must be an isometry.

M. Bognar

8 Let X_{1}, \ldots, X_{n} be n points in the unit square ($n>1$). Let r_{i} be the distance of X_{i} from the nearest point (other than X_{i}). Prove that the inequality

$$
r_{1}^{2}+\ldots+r_{n}^{2} \leq 4
$$

L. Fejes-Toth, E. Szemeredi

9 Suppose that all subspaces of cardinality at most \aleph_{1} of a topological space are second-countable. Prove that the whole space is second-countable.

A. Hajnal, I. Juhasz

10 Let Y_{n} be a binomial random variable with parameters n and p. Assume that a certain set H of positive integers has a density and that this density is equal to d. Prove the following statements:
(a) $\lim _{n \rightarrow \infty} P\left(Y_{n} \in H\right)=d$ if H is an arithmetic progression.
(b) The previous limit relation is not valid for arbitrary H.
(c) If H is such that $P\left(Y_{n} \in H\right)$ is convergent, then the limit must be equal to d.
L. Posa

