AoPS Community

Mikls Schweitzer 1980

www.artofproblemsolving.com/community/c3714
by ehsan2004
$1 \quad$ For a real number x, let $\|x\|$ denote the distance between x and the closest integer. Let $0 \leq$ $x_{n}<1(n=1,2, \ldots)$, and let $\varepsilon>0$. Show that there exist infinitely many pairs (n, m) of indices such that $n \neq m$ and

$$
\left\|x_{n}-x_{m}\right\|<\min \left(\varepsilon, \frac{1}{2|n-m|}\right) .
$$

V. T. Sos

2 Let \mathcal{H} be the class of all graphs with at most $2^{\aleph_{0}}$ vertices not containing a complete subgraph of size \aleph_{1}. Show that there is no graph $H \in \mathcal{H}$ such that every graph in \mathcal{H} is a subgraph of H.

F. Galvin

$3 \quad$ In a lattice, connected the elements $a \wedge b$ and $a \vee b$ by an edge whenever a and b are incomparable. Prove that in the obtained graph every connected component is a sublattice.

M. Ajtai

$4 \quad$ Let $T \in S L(n, \mathbb{Z})$, let G be a nonsingular $n \times n$ matrix with integer elements, and put $S=G^{-1} T G$. Prove that there is a natural number k such that $S^{k} \in S L(n, \mathbb{Z})$.

Gy. Szekeres

5 Let G be a transitive subgroup of the symmetric group S_{25} different from S_{25} and A_{25}. Prove that the order of G is not divisible by 23 .

J. Pelikan

6 Let us call a continuous function $f:[a, b] \rightarrow \mathbb{R}^{2}$ reducible if it has a double arc (that is, if there are $a \leq \alpha<\beta \leq \gamma<\delta \leq b$ such that there exists a strictly monotone and continuous $h:[\alpha, \beta] \rightarrow[\gamma, \delta]$ for which $f(t)=f(h(t))$ is satisfied for every $\alpha \leq t \leq \beta$; otherwise f is irreducible. Construct irreducible $f:[a, b] \rightarrow \mathbb{R}^{2}$ and $g:[c, d] \rightarrow \mathbb{R}^{2}$ such that $f([a, b])=g([c, d])$ and
(a) both f and g are rectifiable but their lengths are different;
(b) f is rectifiable but g is not.
A. Csaszar
$7 \quad$ Let $n \geq 2$ be a natural number and $p(x)$ a real polynomial of degree at most n for which

$$
\max _{-1 \leq x \leq 1}|p(x)| \leq 1, p(-1)=p(1)=0 .
$$

Prove that then

$$
\left|p^{\prime}(x)\right| \leq \frac{n \cos \frac{\pi}{2 n}}{\sqrt{1-x^{2} \cos ^{2} \frac{\pi}{2 n}}} \quad\left(-\frac{1}{\cos \frac{\pi}{2 n}}<x<\frac{1}{\cos \frac{\pi}{2 n}}\right) .
$$

J. Szabados

8 Let $f(x)$ be a nonnegative, integrable function on $(0,2 \pi)$ whose Fourier series is $f(x)=a_{0}+$ $\sum_{k=1}^{\infty} a_{k} \cos \left(n_{k} x\right)$, where none of the positive integers n_{k} divides another. Prove that $\left|a_{k}\right| \leq a_{0}$.
G. Halasz

9 Let us divide by straight lines a quadrangle of unit area into n subpolygons and draw a circle into each subpolygon. Show that the sum of the perimeters of the circles is at most $\pi \sqrt{n}$ (the lines are not allowed to cut the interior of a subpolygon).

G. and L. Fejes-Toth

10 Suppose that the T_{3}-space X has no isolated points and that in X any family of pairwise disjoint, nonempty, open sets
is countable. Prove that X can be covered by at most continuum many nowhere-dense sets.
I. Juhasz

