

AoPS Community

Mikls Schweitzer 1980

www.artofproblemsolving.com/community/c3714 by ehsan2004

1 For a real number x, let ||x|| denote the distance between x and the closest integer. Let $0 \le x_n < 1$ (n = 1, 2, ...), and let $\varepsilon > 0$. Show that there exist infinitely many pairs (n, m) of indices such that $n \ne m$ and

$$||x_n - x_m|| < \min\left(\varepsilon, \frac{1}{2|n-m|}\right).$$

V. T. Sos

2 Let \mathcal{H} be the class of all graphs with at most 2^{\aleph_0} vertices not containing a complete subgraph of size \aleph_1 . Show that there is no graph $H \in \mathcal{H}$ such that every graph in \mathcal{H} is a subgraph of H.

F. Galvin

3 In a lattice, connected the elements $a \wedge b$ and $a \vee b$ by an edge whenever a and b are incomparable. Prove that in the obtained graph every connected component is a sublattice.

M. Ajtai

4 Let $T \in SL(n, \mathbb{Z})$, let G be a nonsingular $n \times n$ matrix with integer elements, and put $S = G^{-1}TG$. Prove that there is a natural number k such that $S^k \in SL(n, \mathbb{Z})$.

Gy. Szekeres

5 Let *G* be a transitive subgroup of the symmetric group S_{25} different from S_{25} and A_{25} . Prove that the order of *G* is not divisible by 23.

J. Pelikan

6 Let us call a continuous function $f : [a,b] \to \mathbb{R}^2$ reducible if it has a double arc (that is, if there are $a \le \alpha < \beta \le \gamma < \delta \le b$ such that there exists a strictly monotone and continuous $h : [\alpha,\beta] \to [\gamma,\delta]$ for which f(t) = f(h(t)) is satisfied for every $\alpha \le t \le \beta$); otherwise f is irreducible. Construct irreducible $f : [a,b] \to \mathbb{R}^2$ and $g : [c,d] \to \mathbb{R}^2$ such that f([a,b]) = g([c,d]) and

(a) both f and g are rectifiable but their lengths are different;

(b) f is rectifiable but g is not.

A. Csaszar

7 Let $n \ge 2$ be a natural number and p(x) a real polynomial of degree at most n for which

$$\max_{-1 \le x \le 1} |p(x)| \le 1, \ p(-1) = p(1) = 0$$

Prove that then

$$|p'(x)| \le \frac{n\cos\frac{\pi}{2n}}{\sqrt{1 - x^2\cos^2\frac{\pi}{2n}}} \quad \left(-\frac{1}{\cos\frac{\pi}{2n}} < x < \frac{1}{\cos\frac{\pi}{2n}}\right).$$

J. Szabados

8 Let f(x) be a nonnegative, integrable function on $(0, 2\pi)$ whose Fourier series is $f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos(n_k x)$, where none of the positive integers n_k divides another. Prove that $|a_k| \le a_0$.

G. Halasz

9 Let us divide by straight lines a quadrangle of unit area into n subpolygons and draw a circle into each subpolygon. Show that the sum of the perimeters of the circles is at most $\pi\sqrt{n}$ (the lines are not allowed to cut the interior of a subpolygon).

G. and L. Fejes-Toth

10 Suppose that the *T*₃-space *X* has no isolated points and that in *X* any family of pairwise disjoint, nonempty, open sets is countable. Prove that *X* can be covered by at most continuum many nowhere-dense sets.

I. Juhasz

AoPS Online AoPS Academy AoPS Content

© 2020 AoPS Incorporated 2

Art of Problem Solving is an ACS WASC Accredited School.