AoPS Community

Mikls Schweitzer 1981

www.artofproblemsolving.com/community/c3715
by ehsan2004

1 We are given an infinite sequence of 1 's and 2's with the following properties:
(1) The first element of the sequence is 1 .
(2) There are no two consecutive 2's or three consecutive 1's.
(3) If we replace consecutive 1's by a single 2 , leave the single 1 's alone, and delete the original 2 's, then we recover the original sequence.

How many 2's are there among the first n elements of the sequence?
P. P. Palfy

2 Consider the lattice L of the contradictions of a simple graph G (as sets of vertex pairs) with respect to inclusion. Let $n \geq 1$ be an arbitrary integer. Show that the identity

$$
x \bigwedge\left(\bigvee_{i=0}^{n} y_{i}\right)=\bigvee_{j=0}^{n}\left(x \bigwedge\left(\bigvee_{0 \leq i \leq n, i \neq j} y_{i}\right)\right)
$$

holds if and only if G has no cycle of size at least $n+2$.

A. Huhn

3 Construct an uncountable Hausdorff space in which the complement of the closure of any nonempty, open set is countable.

A. Hajnal, I. Juhasz

$4 \quad$ Let G be finite group and \mathcal{K} a conjugacy class of G that generates G. Prove that the following two statements are equivalent:
(1) There exists a positive integer m such that every element of G can be written as a product of m (not necessarily distinct) elements of \mathcal{K}.
(2) G is equal to its own commutator subgroup.

J. Denes

$5 \quad$ Let K be a convex cone in the n-dimensional real vector space \mathbb{R}^{n}, and consider the sets $A=K \cup(-K)$ and $B=\left(\mathbb{R}^{n} \backslash A\right) \cup\{0\}$ (0 is the origin). Show that one can find two subspaces in \mathbb{R}^{n} such that together they span \mathbb{R}^{n}, and one of them lies in A and the other lies in B.

J. Szucs

6 Let f be a strictly increasing, continuous function mapping $I=[0,1]$ onto itself. Prove that the following inequality holds for all pairs $x, y \in I$:

$$
1-\cos (x y) \leq \int_{0}^{x} f(t) \sin (t f(t)) d t+\int_{0}^{y} f^{-1}(t) \sin \left(t f^{-1}(t)\right) d t
$$

Zs. Pales

7 Let U be a real normed space such that, for an finite-dimensional, real normed space X, U contains a subspace isometrically isomorphic to X. Prove that every (not necessarily closed) subspace V of U of finite codimension has the same property. (We call V of finite codimension if there exists a finite-dimensional subspace N of U such that $V+N=U$.)

A. Bosznay

8 Let W be a dense, open subset of the real line \mathbb{R}. Show that the following two statements are equivalent:
(1) Every function $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous at all points of $\mathbb{R} \backslash W$ and nondecreasing on every open interval contained in W is nondecreasing on the whole \mathbb{R}.
(2) $\mathbb{R} \backslash W$ is countable.
E. Gesztelyi

9 Let $n \geq 2$ be an integer, and let X be a connected Hausdorff space such that every point of X has a neighborhood homeomorphic to the Euclidean space \mathbb{R}^{n}. Suppose that any discrete (not necessarily closed) subspace D of X can be covered by a family of pairwise disjoint, open sets of X so that each of these open sets contains precisely one element of D. Prove that X is a union of at most \aleph_{1} compact subspaces.

Z. Balogh

10 Let P be a probability distribution defined on the Borel sets of the real line. Suppose that P is symmetric with respect to the origin, absolutely continuous with respect to the Lebesgue measure, and its density function p is zero outside the interval $[-1,1]$ and inside this interval it is between the positive numbers c and $d(c<d)$. Prove that there is no distribution whose
convolution square equals P.
T. F. Mori, G. J. Szekely

