AoPS Community

Mikls Schweitzer 1982

www.artofproblemsolving.com/community/c3716
by ehsan2004

1 A map $F: P(X) \rightarrow P(X)$, where $P(X)$ denotes the set of all subsets of X, is called a closure operation on X if for arbitrary $A, B \subset X$, the following conditions hold:
(i) $A \subset F(A)$;
(ii) $A \subset B \Rightarrow F(A) \subset F(B)$;
(iii) $F(F(A))=F(A)$.

The cardinal number $\min \{|A|: A \subset X, F(A)=X\}$ is called the density of F and is denoted by $d(F)$. A set $H \subset X$ is called discrete with respect to F if $u \notin F(H-\{u\})$ holds for all $u \in H$. Prove that if the density of the closure operation F is a singular cardinal number, then for any nonnegative integer n, there exists a set of size n that is discrete with respect to F. Show that the statement is not true when the existence of an infinite discrete subset is required, even if F is the closure operation of a topological space satisfying the T_{1} separation axiom.

A. Hajnal

2 Consider the lattice of all algebraically closed subfields of the complex field \mathbb{C} whose transcendency degree (over \mathbb{Q}) is finite. Prove that this lattice is not modular.

L. Babai

3 Let $G(V, E)$ be a connected graph, and let $d_{G}(x, y)$ denote the length of the shortest path joining x and y in G. Let $r_{G}(x)=\max \left\{d_{G}(x, y): y \in V\right\}$ for $x \in V$, and let $r(G)=\min \left\{r_{G}(x): x \in\right.$ V \}. Show that if $r(G) \geq 2$, then G contains a path of length $2 r(G)-2$ as an induced subgraph.

V. T. Sos

4 Let

$$
f(n)=\sum_{p \mid n, p^{\alpha} \leq n<p^{\alpha+1}} p^{\alpha} .
$$

Prove that

$$
\limsup _{n \rightarrow \infty} f(n) \frac{\log \log n}{n \log n}=1
$$

P. Erdos

5 Find a perfect set $H \subset[0,1]$ of positive measure and a continuous function f defined on $[0,1]$ such that for any twice differentiable function g defined on $[0,1]$, the set $\{x \in H: f(x)=g(x)\}$ is finite.

M. Laczkovich

6 For every positive α, natural number n, and at most αn points x_{i}, construct a trigonometric polynomial $P(x)$ of degree at most n for which

$$
P\left(x_{i}\right) \leq 1, \int_{0}^{2 \pi} P(x) d x=0, \text { and } \max P(x)>c n
$$

where the constant c depends only on α.

G. Halasz

$7 \quad$ Let V be a bounded, closed, convex set in \mathbb{R}^{n}, and denote by r the radius of its circumscribed sphere (that is, the radius of the smallest sphere that contains V). Show that r is the only real number with the following property: for any finite number of points in V, there exists a point in V such that the arithmetic mean of its distances from the other points is equal to r.

Gy. Szekeres

8 Show that for any natural number n and any real number $d>3^{n} /\left(3^{n}-1\right)$, one can find a covering of the unit square with n homothetic triangles with area of the union less than d.

9 Suppose that K is a compact Hausdorff space and $K=\cup_{n=0}^{\infty} A_{n}$, where A_{n} is metrizable and $A_{n} \subset A_{m}$ for $n<m$. Prove that K is metrizable.

Z. Balogh

10 Let p_{0}, p_{1}, \ldots be a probability distribution on the set of nonnegative integers. Select a number according to this distribution and repeat the selection independently until either a zero or an already selected number is obtained. Write the selected numbers in a row in order of selection without the last one. Below this line, write the numbers again in increasing order. Let A_{i} denote the event that the number i has been selected and that it is in the same place in both lines. Prove that the events $A_{i}(i=1,2, \ldots)$ are mutually independent, and $P\left(A_{i}\right)=p_{i}$.

T. F. Mori

