AoPS Community

Mikls Schweitzer 1983

www.artofproblemsolving.com/community/c3717
by ehsan2004

1 Given n points in a line so that any distance occurs at most twice, show that the number of distance occurring exactly once is at least $\lfloor n / 2\rfloor$.

V. T. Sos, L. Szekely

2 Let I be an ideal of the ring R and f a nonidentity permutation of the set $\{1,2, \ldots, k\}$ for some k. Suppose that for every $0 \neq a \in R, a I \neq 0$ and $I a \neq 0$ hold; furthermore, for any elements $x_{1}, x_{2}, \ldots, x_{k} \in I$,

$$
x_{1} x_{2} \ldots x_{k}=x_{1 f} x_{2 f} \ldots x_{k f}
$$

holds. Prove that R is commutative.

R. Wiegandt

3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable, 2π-periodic even function. Prove that if

$$
f^{\prime \prime}(x)+f(x)=\frac{1}{f(x+3 \pi / 2)}
$$

holds for every x, then f is $\pi / 2$-periodic.

Z. Szabo, J. Terjeki

4 For which cardinalities κ do antimetric spaces of cardinality κ exist? (X, ϱ) is called an antimetric space if X is a nonempty set, $\varrho: X^{2} \rightarrow[0, \infty)$ is a symmetric map, $\varrho(x, y)=0$ holds iff $x=y$, and for any three-element subset $\left\{a_{1}, a_{2}, a_{3}\right\}$ of X

$$
\varrho\left(a_{1 f}, a_{2 f}\right)+\varrho\left(a_{2 f}, a_{3 f}\right)<\varrho\left(a_{1 f}, a_{3 f}\right)
$$

holds for some permutation f of $\{1,2,3\}$.

V. Totik

$5 \quad$ Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $x+g(x)$ is strictly monotone (increasing or decreasing), and let $u:[0, \infty) \rightarrow \mathbb{R}$ be a bounded and continuous function such that

$$
u(t)+\int_{t-1}^{t} g(u(s)) d s
$$

is constant on $[1, \infty)$. Prove that the limit $\lim _{t \rightarrow \infty} u(t)$ exists.

T. Krisztin

6 Let T be a bounded linear operator on a Hilbert space H, and assume that $\left\|T^{n}\right\| \leq 1$ for some natural number n. Prove the existence of an invertible linear operator A on H such that $\left\|A T A^{-1}\right\| \leq 1$.

E. Druszt

7 Prove that if the function $f: \mathbb{R}^{2} \rightarrow[0,1]$ is continuous and its average on every circle of radius 1 equals the function value at the center of the circle, then f is constant.

V. Totik

8 Prove that any identity that holds for every finite n-distributive lattice also holds for the lattice of all convex subsets of the $(n-1)$-dimensional Euclidean space. (For convex subsets, the lattice operations are the set-theoretic intersection and the convex hull of the set-theoretic union. We call a lattice n-distributive if

$$
x \wedge\left(\bigvee_{i=0}^{n} y_{i}\right)=\bigvee_{j=0}^{n}\left(x \wedge\left(\bigvee_{0 \leq i \leq n, i \neq j} y_{i}\right)\right)
$$

holds for all elements of the lattice.)

A. Huhn

9 Prove that if $E \subset \mathbb{R}$ is a bounded set of positive Lebesgue measure, then for every $u<1 / 2$, a point $x=x(u)$ can be found so that

$$
|(x-h, x+h) \cap E| \geq u h
$$

and

$$
|(x-h, x+h) \cap(\mathbb{R} \backslash E)| \geq u h
$$

for all sufficiently small positive values of h.

K. I. Koljada

10 Let R be a bounded domain of area t in the plane, and let C be its center of gravity. Denoting by $T_{A B}$ the circle drawn with the diameter $A B$, let K be a circle that contains each of the circles $T_{A B}(A, B \in R)$. Is it true in general that K contains the circle of area $2 t$ centered at C ?

J. Szucs

11 Let $M^{n} \subset \mathbb{R}^{n+1}$ be a complete, connected hypersurface embedded into the Euclidean space. Show that M^{n} as a Riemannian manifold decomposes to a nontrivial global metric direct product if and only if it is a real cylinder, that is, M^{n} can be decomposed to a direct product of the form $M^{n}=M^{k} \times \mathbb{R}^{n-k}(k<n)$ as well, where M^{k} is a hypersurface in some $(k+1)$-dimensional subspace $E^{k+1} \subset \mathbb{R}^{n+1}, \mathbb{R}^{n-k}$ is the orthogonal complement of E^{k+1}.

Z. Szabo

12 Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, identically distributed, nonnegative random variables with a common continuous distribution function F. Suppose in addition that the inverse of F, the quantile function Q, is also continuous and $Q(0)=0$. Let $0=X_{0: n} \leq X_{1: n} \leq \ldots \leq X_{n: n}$ be the ordered sample from the above random variables. Prove that if $E X_{1}$ is finite, then the random variable

$$
\Delta=\sup _{0 \leq y \leq 1}\left|\frac{1}{n} \sum_{i=1}^{\lfloor n y\rfloor+1}(n+1-i)\left(X_{i: n}-X_{i-1: n}\right)-\int_{0}^{y}(1-u) d Q(u)\right|
$$

tends to zero with probability one as $n \rightarrow \infty$.
S. Csorgp, L. Horvath

