

AoPS Community

Mikls Schweitzer 1983

www.artofproblemsolving.com/community/c3717 by ehsan2004

1 Given *n* points in a line so that any distance occurs at most twice, show that the number of distance occurring exactly once is at least $\lfloor n/2 \rfloor$.

V. T. Sos, L. Szekely

2 Let *I* be an ideal of the ring *R* and *f* a nonidentity permutation of the set $\{1, 2, ..., k\}$ for some *k*. Suppose that for every $0 \neq a \in R$, $aI \neq 0$ and $Ia \neq 0$ hold; furthermore, for any elements $x_1, x_2, ..., x_k \in I$,

$$x_1 x_2 \dots x_k = x_{1f} x_{2f} \dots x_{kf}$$

holds. Prove that R is commutative.

R. Wiegandt

3 Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable, 2π -periodic even function. Prove that if

$$f''(x) + f(x) = \frac{1}{f(x + 3\pi/2)}$$

holds for every *x*, then *f* is $\pi/2$ -periodic.

Z. Szabo, J. Terjeki

4 For which cardinalities κ do antimetric spaces of cardinality κ exist? (X, ϱ) is called an *antimetric space* if X is a nonempty set, $\varrho : X^2 \to [0, \infty)$ is a symmetric map, $\varrho(x, y) = 0$ holds iff x = y, and for any three-element subset $\{a_1, a_2, a_3\}$ of X

$$\varrho(a_{1f}, a_{2f}) + \varrho(a_{2f}, a_{3f}) < \varrho(a_{1f}, a_{3f})$$

holds for some permutation f of $\{1, 2, 3\}$.

V. Totik

5 Let $g : \mathbb{R} \to \mathbb{R}$ be a continuous function such that x + g(x) is strictly monotone (increasing or decreasing), and let $u : [0, \infty) \to \mathbb{R}$ be a bounded and continuous function such that

$$u(t) + \int_{t-1}^{t} g(u(s))ds$$

AoPS Community

is constant on $[1,\infty)$. Prove that the limit $\lim_{t\to\infty} u(t)$ exists.

T. Krisztin

6 Let *T* be a bounded linear operator on a Hilbert space *H*, and assume that $||T^n|| \le 1$ for some natural number *n*. Prove the existence of an invertible linear operator *A* on *H* such that $||ATA^{-1}|| \le 1$.

E. Druszt

7 Prove that if the function $f : \mathbb{R}^2 \to [0, 1]$ is continuous and its average on every circle of radius 1 equals the function value at the center of the circle, then f is constant.

V. Totik

8 Prove that any identity that holds for every finite *n*-distributive lattice also holds for the lattice of all convex subsets of the (n - 1)-dimensional Euclidean space. (For convex subsets, the lattice operations are the set-theoretic intersection and the convex hull of the set-theoretic union. We call a lattice *n*-distributive if

$$x \wedge (\bigvee_{i=0}^{n} y_i) = \bigvee_{j=0}^{n} (x \wedge (\bigvee_{0 \le i \le n, \ i \ne j} y_i))$$

holds for all elements of the lattice.)

A. Huhn

9 Prove that if $E \subset \mathbb{R}$ is a bounded set of positive Lebesgue measure, then for every u < 1/2, a point x = x(u) can be found so that

$$|(x-h,x+h)\cap E|\geq uh$$

and

 $|(x-h, x+h) \cap (\mathbb{R} \setminus E)| \ge uh$

for all sufficiently small positive values of h.

K. I. Koljada

AoPS Community

10 Let *R* be a bounded domain of area *t* in the plane, and let *C* be its center of gravity. Denoting by T_{AB} the circle drawn with the diameter *AB*, let *K* be a circle that contains each of the circles T_{AB} ($A, B \in R$). Is it true in general that *K* contains the circle of area 2*t* centered at *C*?

J. Szucs

11 Let $M^n \subset \mathbb{R}^{n+1}$ be a complete, connected hypersurface embedded into the Euclidean space. Show that M^n as a Riemannian manifold decomposes to a nontrivial global metric direct product if and only if it is a real cylinder, that is, M^n can be decomposed to a direct product of the form $M^n = M^k \times \mathbb{R}^{n-k}$ (k < n) as well, where M^k is a hypersurface in some (k+1)-dimensional subspace $E^{k+1} \subset \mathbb{R}^{n+1}$, \mathbb{R}^{n-k} is the orthogonal complement of E^{k+1} .

Z. Szabo

12 Let $X_1, X_2, ..., X_n$ be independent, identically distributed, nonnegative random variables with a common continuous distribution function F. Suppose in addition that the inverse of F, the quantile function Q, is also continuous and Q(0) = 0. Let $0 = X_{0:n} \le X_{1:n} \le ... \le X_{n:n}$ be the ordered sample from the above random variables. Prove that if EX_1 is finite, then the random variable

$$\Delta = \sup_{0 \le y \le 1} \left| \frac{1}{n} \sum_{i=1}^{\lfloor ny \rfloor + 1} (n+1-i) (X_{i:n} - X_{i-1:n}) - \int_0^y (1-u) dQ(u) \right|$$

tends to zero with probability one as $n \to \infty$.

S. Csorgp, L. Horvath

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.

3