Art of Problem Solving

AoPS Community

China National Olympiad 2017
www.artofproblemsolving.com/community/c372140
by buzzychaoz, sqing, fattypiggy123

Day 1 November 23rd

1 The sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are defined by $u_{0}=u_{1}=1, u_{n}=2 u_{n-1}-3 u_{n-2}(n \geq 2)$, $v_{0}=a, v_{1}=b, v_{2}=c, v_{n}=v_{n-1}-3 v_{n-2}+27 v_{n-3}(n \geq 3)$. There exists a positive integer N such that when $n>N$, we have $u_{n} \mid v_{n}$. Prove that $3 a=2 b+c$.

2 In acute triangle $A B C$, let $\odot O$ be its circumcircle, $\odot I$ be its incircle. Tangents at B, C to $\odot O$ meet at $L, \odot I$ touches $B C$ at D. $A Y$ is perpendicular to $B C$ at $Y, A O$ meets $B C$ at X, and $O I$ meets $\odot O$ at P, Q. Prove that P, Q, X, Y are concyclic if and only if A, D, L are collinear.

3 Consider a rectangle R partitioned into 2016 smaller rectangles such that the sides of each smaller rectangle is parallel to one of the sides of the original rectangle. Call the corners of each rectangle a vertex. For any segment joining two vertices, call it basic if no other vertex lie on it. (The segments must be part of the partitioning.) Find the maximum/minimum possible number of basic segments over all possible partitions of R.

Day 2 November 24th
4 Let $n \geq 2$ be a natural number. For any two permutations of $(1,2, \cdots, n)$, say $\alpha=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $\beta=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$, if there exists a natural number $k \leq n$ such that

$$
b_{i}= \begin{cases}a_{k+1-i}, & 1 \leq i \leq k \\ a_{i}, & k<i \leq n,\end{cases}
$$

we call α a friendly permutation of β.
Prove that it is possible to enumerate all possible permutations of $(1,2, \cdots, n)$ as $P_{1}, P_{2}, \cdots, P_{m}$ such that for all $i=1,2, \cdots, m, P_{i+1}$ is a friendly permutation of P_{i} where $m=n$! and $P_{m+1}=$ P_{1}.
$5 \quad$ Let D_{n} be the set of divisors of n. Find all natural n such that it is possible to split D_{n} into two disjoint sets A and G, both containing at least three elements each, such that the elements in A form an arithmetic progression while the elements in G form a geometric progression.

6 Given an integer $n \geq 2$ and real numbers a, b such that $0<a<b$. Let $x_{1}, x_{2}, \ldots, x_{n} \in[a, b]$ be real numbers. Find the maximum value of

$$
\frac{\frac{x_{1}^{2}}{x_{2}}+\frac{x_{2}^{2}}{x_{3}}+\cdots+\frac{x_{n-1}^{2}}{x_{n}}+\frac{x_{n}^{2}}{x_{1}}}{x_{1}+x_{2}+\cdots+x_{n-1}+x_{n}}
$$

