AoPS Community

JBMO ShortLists 2000

www.artofproblemsolving.com/community/c3730
by WakeUp

1 Prove that there are at least 666 positive composite numbers with 2006 digits, having a digit equal to 7 and all the rest equal to 1 .

2 Find all the positive perfect cubes that are not divisible by 10 such that the number obtained by erasing the last three digits is also a perfect cube.

3 Find the greatest positive integer x such that 23^{6+x} divides 2000 !
4 Find all the integers written as $\overline{a b c d}$ in decimal representation and $\overline{d c b a}$ in base 7.
5 Find all pairs of integers (m, n) such that the numbers $A=n^{2}+2 m n+3 m^{2}+2, B=2 n^{2}+$ $3 m n+m^{2}+2, C=3 n^{2}+m n+2 m^{2}+1$ have a common divisor greater than 1.

6 Find all four-digit numbers such that when decomposed into prime factors, each number has the sum of its prime factors equal to the sum of the exponents.

7 Find all the pairs of positive integers (m, n) such that the numbers $A=n^{2}+2 m n+3 m^{2}+3 n$, $B=2 n^{2}+3 m n+m^{2}, C=3 n^{2}+m n+2 m^{2}$ are consecutive in some order.

8 Find all positive integers a, b for which $a^{4}+4 b^{4}$ is a prime number.
$9 \quad$ Find all the triples (x, y, z) of positive integers such that $x y+y z+z x-x y z=2$.
10 Prove that there are no integers x, y, z such that

$$
x^{4}+y^{4}+z^{4}-2 x^{2} y^{2}-2 y^{2} z^{2}-2 z^{2} x^{2}=2000
$$

11 Prove that for any integer n one can find integers a and b such that

$$
n=[a \sqrt{2}]+[b \sqrt{3}]
$$

12 Consider a sequence of positive integers x_{n} such that:

$$
\text { (A) } x_{2 n+1}=4 x_{n}+2 n+2
$$

$$
\text { (B) } x_{3 n+2}=3 x_{n+1}+6 x_{n}
$$

for all $n \geq 0$.
Prove that

$$
\text { (C) } x_{3 n-1}=x_{n+2}-2 x_{n+1}+10 x_{n}
$$

for all $n \geq 0$.
13 Prove that

$$
\begin{gathered}
\sqrt{\left(1^{k}+2^{k}\right)\left(1^{k}+2^{k}+3^{k}\right) \ldots\left(1^{k}+2^{k}+\ldots+n^{k}\right)} \\
\geq 1^{k}+2^{k}+\ldots+n^{k}-\frac{2^{k-1}+2 \cdot 3^{k-1}+\ldots+(n-1) \cdot n^{k-1}}{n}
\end{gathered}
$$

for all integers $n, k \geq 2$.
14 Let m and n be positive integers with $m \leq 2000$ and $k=3-\frac{m}{n}$. Find the smallest positive value of k.

15 Let x, y, a, b be positive real numbers such that $x \neq y, x \neq 2 y, y \neq 2 x, a \neq 3 b$ and $\frac{2 x-y}{2 y-x}=\frac{a+3 b}{a-3 b}$. Prove that $\frac{x^{2}+y^{2}}{x^{2}-y^{2}} \geq 1$.

16 Find all the triples (x, y, z) of real numbers such that

$$
2 x \sqrt{y-1}+2 y \sqrt{z-1}+2 z \sqrt{x-1} \geq x y+y z+z x
$$

17 A triangle $A B C$ is given. Find all the pairs of points X, Y so that X is on the sides of the triangle, Y is inside the triangle, and four non-intersecting segments from the set $\{X Y, A X, A Y, B X, B Y, C X, C Y\}$ divide the triangle $A B C$ into four triangles with equal areas.

18 A triangle $A B C$ is given. Find all the segments $X Y$ that lie inside the triangle such that $X Y$ and five of the segments $X A, X B, X C, Y A, Y B, Y C$ divide the triangle $A B C$ into 5 regions with equal areas. Furthermore, prove that all the segments $X Y$ have a common point.

19 Let $A B C$ be a triangle. Find all the triangles $X Y Z$ with vertices inside triangle $A B C$ such that $X Y, Y Z, Z X$ and six non-intersecting segments from the following $A X, A Y, A Z, B X, B Y, B Z, C X, C Y, C Z$ divide the triangle $A B C$ into seven regions with equal areas.

20 Let $A B C$ be a triangle and let a, b, c be the lengths of the sides $B C, C A, A B$ respectively. Consider a triangle $D E F$ with the side lengths $E F=\sqrt{a u}, F D=\sqrt{b u}, D E=\sqrt{c u}$. Prove that $\angle A>\angle B>\angle C$ implies $\angle A>\angle D>\angle E>\angle F>\angle C$.

21 All the angles of the hexagon $A B C D E F$ are equal. Prove that

$$
A B-D E=E F-B C=C D-F A
$$

22 Consider a quadrilateral with $\angle D A B=60^{\circ}, \angle A B C=90^{\circ}$ and $\angle B C D=120^{\circ}$. The diagonals $A C$ and $B D$ intersect at M. If $M B=1$ and $M D=2$, find the area of the quadrilateral $A B C D$.

23 The point P is inside of an equilateral triangle with side length 10 so that the distance from P to two of the sides are 1 and 3 . Find the distance from P to the third side.

