AoPS Community

JBMO ShortLists 2001

www.artofproblemsolving.com/community/c3731
by WakeUp

1 Find the positive integers n that are not divisible by 3 if the number $2^{n^{2}-10}+2133$ is a perfect cube.

The wording of this problem is perhaps not the best English. As far as I am aware, just solve the diophantine equation $x^{3}=2^{n^{2}-10}+2133$ where $x, n \in \mathbb{N}$ and $3 \nmid n$.

2 Let $P_{n}(n=3,4,5,6,7)$ be the set of positive integers $n^{k}+n^{l}+n^{m}$, where k, l, m are positive integers. Find n such that:
i) In the set P_{n} there are infinitely many squares.
ii) In the set P_{n} there are no squares.

3 Find all the three-digit numbers $\overline{a b c}$ such that the 6003-digit number $\overline{a b c a b c \ldots a b c}$ is divisible by 91 .

4 The discriminant of the equation $x^{2}-a x+b=0$ is the square of a rational number and a and b are integers. Prove that the roots of the equation are integers.
$5 \quad$ Let $x_{k}=\frac{k(k+1)}{2}$ for all integers $k \geq 1$. Prove that for any integer $n \geq 10$, between the numbers $A=x_{1}+x_{2}+\ldots+x_{n-1}$ and $B=A+x_{n}$ there is at least one square.
$6 \quad$ Find all integers x and y such that $x^{3} \pm y^{3}=2001 p$, where p is prime.
$7 \quad$ Prove that there are are no positive integers x and y such that $x^{5}+y^{5}+1=(x+2)^{5}+(y-3)^{5}$.

The restriction x, y are positive isn't necessary.
8 Prove that no three points with integer coordinates can be the vertices of an equilateral triangle.

9 Consider a convex quadrilateral $A B C D$ with $A B=C D$ and $\angle B A C=30^{\circ}$. If $\angle A D C=150^{\circ}$, prove that $\angle B C A=\angle A C D$.

10 A triangle $A B C$ is inscribed in the circle $\mathcal{C}(O, R)$. Let $\alpha<1$ be the ratio of the radii of the circles tangent to \mathcal{C}, and both of the rays $(A B$ and $(A C$. The numbers $\beta<1$ and $\gamma<1$ are defined analogously. Prove that $\alpha+\beta+\gamma=1$.

11 Consider a triangle $A B C$ with $A B=A C$, and D the foot of the altitude from the vertex A. The point E lies on the side $A B$ such that $\angle A C E=\angle E C B=18^{\circ}$.

If $A D=3$, find the length of the segment $C E$.
12 Consider the triangle $A B C$ with $\angle A=90^{\circ}$ and $\angle B \neq \angle C$. A circle $\mathcal{C}(O, R)$ passes through B and C and intersects the sides $A B$ and $A C$ at D and E, respectively. Let S be the foot of the perpendicular from A to $B C$ and let K be the intersection point of $A S$ with the segment $D E$. If M is the midpoint of $B C$, prove that $A K O M$ is a parallelogram.

13 At a conference there are n mathematicians. Each of them knows exactly k fellow mathematicians. Find the smallest value of k such that there are at least three mathematicians that are acquainted each with the other two.

Rewording of the last line for clarification:
Find the smallest value of k such that there (always) exists 3 mathematicians X, Y, Z such that X and Y know each other, X and Z know each other and Y and Z know each other.

