

AoPS Community

JBMO ShortLists 2002

_

_

www.artofproblemsolving.com/community/c3732 by Bugi

1	A student is playing computer. Computer shows randomly 2002 positive numbers. Game's rules let do the following operations - to take 2 numbers from these, to double first one, to add the second one and to save the sum. - to take another 2 numbers from the remainder numbers, to double the first one, to add the second one, to multiply this sum with previous and to save the result. - to repeat this procedure, until all the 2002 numbers won't be used. Student wins the game if final product is maximum possible. Find the winning strategy and prove it.
2	Positive real numbers are arranged in the form: 1 3 6 10 15 2 5 9 14 4 8 13 7 12 11 Find the number of the line and column where the number 2002 stays.
3	Let a, b, c be positive real numbers such that $abc = \frac{9}{4}$. Prove the inequality: $a^3 + b^3 + c^3 > a\sqrt{b+c} + b\sqrt{c+a} + c\sqrt{a+b}$
	Jury's variant: Prove the same, but with $abc = 2$
5	Let a, b, c be positive real numbers. Prove the inequality: $\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{a^2} \ge \frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a}$
6	Let $a_1, a_2,, a_6$ be real numbers such that: $a_1 \neq 0, a_1a_6 + a_3 + a_4 = 2a_2a_5$ and $a_1a_3 \ge a_2^2$ Prove that $a_4a_6 \le a_5^2$. When does equality holds?
7	Consider integers $a_i, i = \overline{1,2002}$ such that $a_1^{-3} + a_2^{-3} + \ldots + a_{2002}^{-3} = \frac{1}{2}$ Prove that at least 3 of the numbers are equal.
8	Let ABC be a triangle with centroid G and A_1, B_1, C_1 midpoints of the sides BC, CA, AB . A paralel through A_1 to BB_1 intersects B_1C_1 at F . Prove that triangles ABC and FA_1A are similar if and only if quadrilateral AB_1GC_1 is cyclic.
9	In triangle ABC, H, I, O are orthocenter, incenter and circumcenter, respectively. CI cuts circumcircle at L . If $AB = IL$ and $AH = OH$, find angles of triangle ABC .
10	Let ABC be a triangle with area S and points D, E, F on the sides BC, CA, AB . Perpendiculars at points D, E, F to the BC, CA, AB cut circumcircle of the triangle ABC at points

AoPS Community

 $(D_1, D_2), (E_1, E_2), (F_1, F_2).$ Prove that: $|D_1B \cdot D_1C - D_2B \cdot D_2C| + |E_1A \cdot E_1C - E_2A \cdot E_2C| + |F_1B \cdot F_1A - F_2B \cdot F_2A| > 4S$

- 11 Let ABC be an isosceles triangle with AB = AC and $\angle A = 20^{\circ}$. On the side AC consider point D such that AD = BC. Find $\angle BDC$.
- 12 Let ABCD be a convex quadrilateral with AB = AD and BC = CD. On the sides AB, BC, CD, DAwe consider points K, L, L_1, K_1 such that quadrilateral KLL_1K_1 is rectangle. Then consider rectangles MNPQ inscribed in the triangle BLK, where $M \in KB, N \in BL, P, Q \in LK$ and $M_1N_1P_1Q_1$ inscribed in triangle DK_1L_1 where P_1 and Q_1 are situated on the L_1K_1, M on the DK_1 and N_1 on the DL_1 . Let S, S_1, S_2, S_3 be the areas of the $ABCD, KLL_1K_1, MNPQ, M_1N_1P_1Q_1$ respectively. Find the maximum possible value of the expression: $\frac{S_1+S_2+S_3}{S}$
- **13** Let $A_1, A_2, ..., A_{2002}$ be arbitrary points in the plane. Prove that for every circle of radius 1 and for every rectangle inscribed in this circle, there exist 3 vertices M, N, P of the rectangle such that $MA_1 + MA_2 + \cdots + MA_{2002} + NA_1 + NA_2 + \cdots + NA_{2002} + PA_1 + PA_2 + \cdots + PA_{2002} \ge 6006$.

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.