Art of Problem Solving

AoPS Community

JBMO ShortLists 2002

www.artofproblemsolving.com/community/c3732
by Bugi

1 A student is playing computer. Computer shows randomly 2002 positive numbers. Game's rules let do the following operations

- to take 2 numbers from these, to double first one, to add the second one and to save the sum.
- to take another 2 numbers from the remainder numbers, to double the first one, to add the second one, to multiply this sum with previous and to save the result.
- to repeat this procedure, until all the 2002 numbers won't be used.

Student wins the game if final product is maximum possible.
Find the winning strategy and prove it.
2 Positive real numbers are arranged in the form: $\begin{array}{lllllllllllll}1 & 3 & 6 & 10 & 15 \ldots & 5 & 9 & 14 \ldots 4 & 8 & 13 \ldots 7 & 12 \ldots\end{array}$ 11...

Find the number of the line and column where the number 2002 stays.
3 Let a, b, c be positive real numbers such that $a b c=\frac{9}{4}$. Prove the inequality: $a^{3}+b^{3}+c^{3}>$ $a \sqrt{b+c}+b \sqrt{c+a}+c \sqrt{a+b}$

Jury's variant:
Prove the same, but with $a b c=2$
5 Let a, b, c be positive real numbers. Prove the inequality: $\frac{a^{3}}{b^{2}}+\frac{b^{3}}{c^{2}}+\frac{c^{3}}{a^{2}} \geq \frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}$
6 Let $a_{1}, a_{2}, \ldots, a_{6}$ be real numbers such that: $a_{1} \neq 0, a_{1} a_{6}+a_{3}+a_{4}=2 a_{2} a_{5}$ and $a_{1} a_{3} \geq a_{2}^{2}$ Prove that $a_{4} a_{6} \leq a_{5}^{2}$. When does equality holds?

7 Consider integers $a_{i}, i=\overline{1,2002}$ such that $a_{1}^{-3}+a_{2}^{-3}+\ldots+a_{2002}^{-3}=\frac{1}{2}$
Prove that at least 3 of the numbers are equal.
8 Let $A B C$ be a triangle with centroid G and A_{1}, B_{1}, C_{1} midpoints of the sides $B C, C A, A B$. A paralel through A_{1} to $B B_{1}$ intersects $B_{1} C_{1}$ at F. Prove that triangles $A B C$ and $F A_{1} A$ are similar if and only if quadrilateral $A B_{1} G C_{1}$ is cyclic.

9 In triangle $A B C, H, I, O$ are orthocenter, incenter and circumcenter, respectively. $C I$ cuts circumcircle at L. If $A B=I L$ and $A H=O H$, find angles of triangle $A B C$.

10 Let $A B C$ be a triangle with area S and points D, E, F on the sides $B C, C A, A B$. Perpendiculars at points D, E, F to the $B C, C A, A B$ cut circumcircle of the triangle $A B C$ at points
$\left(D_{1}, D_{2}\right),\left(E_{1}, E_{2}\right),\left(F_{1}, F_{2}\right)$. Prove that: $\left|D_{1} B \cdot D_{1} C-D_{2} B \cdot D_{2} C\right|+\left|E_{1} A \cdot E_{1} C-E_{2} A \cdot E_{2} C\right|+$ $\left|F_{1} B \cdot F_{1} A-F_{2} B \cdot F_{2} A\right|>4 S$

11 Let $A B C$ be an isosceles triangle with $A B=A C$ and $\angle A=20^{\circ}$. On the side $A C$ consider point D such that $A D=B C$. Find $\angle B D C$.

12 Let $A B C D$ be a convex quadrilateral with $A B=A D$ and $B C=C D$. On the sides $A B, B C, C D, D A$ we consider points K, L, L_{1}, K_{1} such that quadrilateral $K L L_{1} K_{1}$ is rectangle. Then consider rectangles $M N P Q$ inscribed in the triangle $B L K$, where $M \in K B, N \in B L, P, Q \in L K$ and $M_{1} N_{1} P_{1} Q_{1}$ inscribed in triangle $D K_{1} L_{1}$ where P_{1} and Q_{1} are situated on the $L_{1} K_{1}, M$ on the $D K_{1}$ and N_{1} on the $D L_{1}$. Let S, S_{1}, S_{2}, S_{3} be the areas of the $A B C D, K L L_{1} K_{1}, M N P Q, M_{1} N_{1} P_{1} Q_{1}$ respectively. Find the maximum possible value of the expression: $\frac{S_{1}+S_{2}+S_{3}}{S}$

13 Let $A_{1}, A_{2}, \ldots, A_{2002}$ be arbitrary points in the plane. Prove that for every circle of radius 1 and for every rectangle inscribed in this circle, there exist 3 vertices M, N, P of the rectangle such that $M A_{1}+M A_{2}+\cdots+M A_{2002}+N A_{1}+N A_{2}+\cdots+N A_{2002}+P A_{1}+P A_{2}+\cdots+P A_{2002} \geq 6006$.

