Art of Problem Solving

AoPS Community

JBMO ShortLists 2006

www.artofproblemsolving.com/community/c3733
by Bugi, parmenides51

1 For an acute triangle $A B C$ prove the inequality: $\sum_{\text {cyclic }} \frac{m_{a}^{2}}{-a^{2}+b^{2}+c^{2}} \geq \frac{9}{4}$ where m_{a}, m_{b}, m_{c} are lengths of corresponding medians.

2 Let x, y, z be positive real numbers such that $x+2 y+3 z=\frac{11}{12}$. Prove the inequality $6(3 x y+$ $4 x z+2 y z)+6 x+3 y+4 z+72 x y z \leq \frac{107}{18}$.

3 Let $n \geq 3$ be a natural number. A set of real numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is called summable if $\sum_{i=1}^{n} \frac{1}{x_{i}}=1$. Prove that for every $n \geq 3$ there always exists a summable set which consists of n elements such that the biggest element is:
a) bigger than $2^{2 n-2}$
b) smaller than n^{2}

4 Determine the biggest possible value of m for which the equation $2005 x+2007 y=m$ has unique solution in natural numbers.

5 Determine all pairs (m, n) of natural numbers for which $m^{2}=n k+2$ where $k=\overline{n 1}$.
EDIT. It has been discovered the correct statement is with $k=\overline{1 n}$.
6 Prove that for every composite number $n>4$, numbers $k n$ divides $(n-1)$! for every integer k such that $1 \leq k \leq\lfloor\sqrt{n-1}\rfloor$.

7 Determine all numbers $\overline{a b c d}$ such that $\overline{a b c d}=11(a+b+c+d)^{2}$.
8 Prove that there do not exist natural numbers $n \geq 10$ having all digits different from zero, and such that all numbers which are obtained by permutations of its digits are perfect squares.

9 Let $A B C D$ be a trapezoid with $A B \| C D, A B>C D$ and $\angle A+\angle B=90^{\circ}$. Prove that the distance between the midpoints of the bases is equal to the semidifference of the bases.

10 Let $A B C D$ be a trapezoid inscribed in a circle \mathcal{C} with $A B \| C D, A B=2 C D$. Let $\{Q\}=A D \cap B C$ and let P be the intersection of tangents to \mathcal{C} at B and D. Calculate the area of the quadrilateral $A B P Q$ in terms of the area of the triangle $P D Q$.
$11 \quad$ Circles \mathcal{C}_{1} and \mathcal{C}_{2} intersect at A and B. Let $M \in A B$. A line through M (different from $A B$) cuts circles \mathcal{C}_{1} and \mathcal{C}_{2} at Z, D, E, C respectively such that $D, E \in Z C$. Perpendiculars at B to the lines $E B, Z B$ and $A D$ respectively cut circle \mathcal{C}_{2} in F, K and N. Prove that $K F=N C$.

12 Let $A B C$ be an equilateral triangle of center O, and $M \in B C$. Let K, L be projections of M onto the sides $A B$ and $A C$ respectively. Prove that line $O M$ passes through the midpoint of the segment $K L$.

13 Let A be a subset of the set $\{1,2, \ldots, 2006\}$, consisting of 1004 elements.
Prove that there exist 3 distinct numbers $a, b, c \in A$ such that $\operatorname{gcd}(a, b)$:
a) divides c
b) doesn't divide c

14 Let $n \geq 5$ be a positive integer. Prove that the set $\{1,2, \ldots, n\}$ can be partitioned into two non-zero subsets S_{n} and P_{n} such that the sum of elements in S_{n} is equal to the product of elements in P_{n}.

15 Let A_{1} and B_{1} be internal points lying on the sides $B C$ and $A C$ of the triangle $A B C$ respectively and segments $A A_{1}$ and $B B_{1}$ meet at O. The areas of the triangles $A O B_{1}, A O B$ and $B O A_{1}$ are distinct prime numbers and the area of the quadrilateral $A_{1} O B_{1} C$ is an integer. Find the least possible value of the area of the triangle $A B C$, and argue the existence of such a triangle.

