Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2005

www.artofproblemsolving.com/community/c3735
by jgnr, thanhnam2902, The QuattoMaster 6000, fallinlovewithmaths, orl, Erken

- Junior

Day 1

1 The 40 unit squares of the 9 9-table (see below) are labeled. The horizontal or vertical row of 9 unit squares is good if it has more labeled unit squares than unlabeled ones. How many good (horizontal and vertical) rows totally could have the table?

2 Let m, n be integers such that $0 \leq m \leq 2 n$. Then prove that the number $2^{2 n+2}+2^{m+2}+1$ is perfect square iff $m=n$.

3 Let A be a set of $2 n$ points on the plane such that no three points are collinear. Prove that for any distinct two points $a, b \in A$ there exists a line that partitions A into two subsets each containing n points and such that a, b lie on different sides of the line.

Day 2

1 For the positive real numbers a, b, c prove the inequality

$$
\frac{c}{a+2 b}+\frac{a}{b+2 c}+\frac{b}{c+2 a} \geq 1 .
$$

2 Let the circle $(I ; r)$ be inscribed in the triangle $A B C$. Let D be the point of contact of this circle with $B C$. Let E and F be the midpoints of $B C$ and $A D$, respectively. Prove that the three points I, E, F are collinear.

3 Find all prime numbers p, q less than 2005 and such that $q\left|p^{2}+4, p\right| q^{2}+4$.

- Senior

Day 1

1 Prove that the equation $x^{5}+31=y^{2}$ has no integer solution.
2 Let r be a real number such that the sequence $\left(a_{n}\right)_{n \geq 1}$ of positive real numbers satisfies the equation $a_{1}+a_{2}+\cdots+a_{m+1} \leq r a_{m}$ for each positive integer m. Prove that $r \geq 4$.

3 Let SABC be a regular triangular pyramid. Find the set of all points $D(D!=S)$ in the space satisfing the equation $|\cos A S D-2 \cos B S D-2 \cos C S D|=3$.

Day 2

1 For the positive real numbers a, b, c prove that

$$
\frac{c}{a+2 b}+\frac{d}{b+2 c}+\frac{a}{c+2 d}+\frac{b}{d+2 a} \geq \frac{4}{3} .
$$

2 The inner point X of a quadrilateral is observable from the side $Y Z$ if the perpendicular to the line $Y Z$ meet it in the colosed interval $[Y Z]$. The inner point of a quadrilateral is a k-point if it is observable from the exactly k sides of the quadrilateral. Prove that if a convex quadrilateral has a 1-point then it has a k-point for each $k=2,3,4$.

3 Find all prime numbers $p, q<2005$ such that $q \mid p^{2}+8$ and $p \mid q^{2}+8$.

