

## AoPS Community

# 2006 International Zhautykov Olympiad

#### International Zhautykov Olympiad 2006

www.artofproblemsolving.com/community/c3736

by spider\_boy, lasha, Valentin Vornicu, Chang Woo-JIn, Severius

| Day 1 |                                                                                                                                                                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Solve in positive integers the equation                                                                                                                                                                                                            |
|       | $n = \varphi(n) + 402,$                                                                                                                                                                                                                            |
|       | where $\varphi(n)$ is the number of positive integers less than $n$ having no common prime factors with $n.$                                                                                                                                       |
| 2     | Let $ABC$ be a triangle and $K$ and $L$ be two points on $(AB)$ , $(AC)$ such that $BK = CL$ and let $P = CK \cap BL$ . Let the parallel through $P$ to the interior angle bisector of $\angle BAC$ intersect $AC$ in $M$ . Prove that $CM = AB$ . |
| 3     | Let $m \ge n \ge 4$ be two integers. We call a $m \times n$ board filled with 0's or 1's <i>good</i> if                                                                                                                                            |
|       | 1) not all the numbers on the board are 0 or 1;                                                                                                                                                                                                    |
|       | 2) the sum of all the numbers in $3 	imes 3$ sub-boards is the same;                                                                                                                                                                               |
|       | 3) the sum of all the numbers in $4	imes 4$ sub-boards is the same.                                                                                                                                                                                |
|       | Find all $m, n$ such that there exists a good $m \times n$ board.                                                                                                                                                                                  |
| Day 2 |                                                                                                                                                                                                                                                    |
| 1     | In a pile you have 100 stones. A partition of the pile in k piles is <i>good</i> if:                                                                                                                                                               |
|       | 1) the small piles have different numbers of stones;                                                                                                                                                                                               |
|       | 2) for any partition of one of the small piles in 2 smaller piles, among the $k + 1$ piles you get 2 with the same number of stones (any pile has at least 1 stone).                                                                               |
|       | Find the maximum and minimal values of $k$ for which this is possible.                                                                                                                                                                             |
| 2     | Let $a, b, c, d$ be real numbers with sum 0. Prove the inequality:                                                                                                                                                                                 |
|       | $(ab + ac + ad + bc + bd + cd)^2 + 12 \ge 6(abc + abd + acd + bcd).$                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                    |

### **AoPS Community**

## 2006 International Zhautykov Olympiad

**3** Let ABCDEF be a convex hexagon such that AD = BC + EF, BE = AF + CD, CF = DE + AB. Prove that:

$$\frac{AB}{DE} = \frac{CD}{AF} = \frac{EF}{BC}.$$

Act of Problem Solving is an ACS WASC Accredited School.