AoPS Community

International Zhautykov Olympiad 2006

www.artofproblemsolving.com/community/c3736
by spider_boy, lasha, Valentin Vornicu, Chang Woo-JIn, Severius

Day 1

1 Solve in positive integers the equation

$$
n=\varphi(n)+402,
$$

where $\varphi(n)$ is the number of positive integers less than n having no common prime factors with n.

2 Let $A B C$ be a triangle and K and L be two points on $(A B),(A C)$ such that $B K=C L$ and let $P=C K \cap B L$. Let the parallel through P to the interior angle bisector of $\angle B A C$ intersect $A C$ in M. Prove that $C M=A B$.

3 Let $m \geq n \geq 4$ be two integers. We call a $m \times n$ board filled with 0's or 1's good if

1) not all the numbers on the board are 0 or 1 ;
2) the sum of all the numbers in 3×3 sub-boards is the same;
3) the sum of all the numbers in 4×4 sub-boards is the same.

Find all m, n such that there exists a good $m \times n$ board.

Day 2

1 In a pile you have 100 stones. A partition of the pile in k piles is good if:

1) the small piles have different numbers of stones;
2) for any partition of one of the small piles in 2 smaller piles, among the $k+1$ piles you get 2 with the same number of stones (any pile has at least 1 stone).

Find the maximum and minimal values of k for which this is possible.
2 Let a, b, c, d be real numbers with sum 0 . Prove the inequality:

$$
(a b+a c+a d+b c+b d+c d)^{2}+12 \geq 6(a b c+a b d+a c d+b c d) .
$$

3 Let $A B C D E F$ be a convex hexagon such that $A D=B C+E F, B E=A F+C D, C F=$ $D E+A B$. Prove that:

$$
\frac{A B}{D E}=\frac{C D}{A F}=\frac{E F}{B C} .
$$

