

## **AoPS Community**

## 2007 International Zhautykov Olympiad

## International Zhautykov Olympiad 2007

www.artofproblemsolving.com/community/c3737 by pohoatza

| 1     | There are given 111 coins and a $n \times n$ table divided into unit cells. This coins are placed inside<br>the unit cells (one unit cell may contain one coin, many coins, or may be empty), such that the<br>difference between the number of coins from two neighbouring cells (that have a common<br>edge) is 1. Find the maximal $n$ for this to be possible. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | Let $ABCD$ be a convex quadrilateral, with $\angle BAC = \angle DAC$ and $M$ a point inside such that $\angle MBA = \angle MCD$ and $\angle MBC = \angle MDC$ . Show that the angle $\angle ADC$ is equal to $\angle BMC$ or $\angle AMB$ .                                                                                                                        |
| 3     | Show that there are an infinity of positive integers $n$ such that $2^n + 3^n$ is divisible by $n^2$ .                                                                                                                                                                                                                                                             |
| Day 2 |                                                                                                                                                                                                                                                                                                                                                                    |
| 1     | Does there exist a function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x + f(y)) = f(x) + \sin y$ , for all reals $x, y$ ?                                                                                                                                                                                                                                       |
| 2     | The set of positive nonzero real numbers are partitioned into three mutually disjoint non-empty subsets $(A \cup B \cup C)$ .<br>a) show that there exists a triangle of side-lengths $a, b, c$ , such that $a \in A, b \in B, c \in C$ .<br>b) does it always happen that there exists a right triangle with the above property ?                                 |
| 3     | Let $ABCDEF$ be a convex hexagon and it's diagonals have one common point $M$ . It is known that the circumcenters of triangles $MAB, MBC, MCD, MDE, MEF, MFA$ lie on a circle. Show that the quadrilaterals $ABDE, BCEF, CDFA$ have equal areas.                                                                                                                  |

Act of Problem Solving is an ACS WASC Accredited School.