Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2008

www.artofproblemsolving.com/community/c3738
by Erken, PhilAndrew

- Senior

Day 1

1 Points K, L, M, N are repectively the midpoints of sides $A B, B C, C D, D A$ in a convex quadrliateral $A B C D$.Line $K M$ meets dioganals $A C$ and $B D$ at points P and Q,respectively.Line $L N$ meets dioganals $A C$ and $B D$ at points R and S,respectively.
Prove that if $A P \cdot P C=B Q \cdot Q D$, then $A R \cdot R C=B S \cdot S D$.
2 A polynomial $P(x)$ with integer coefficients is called good, if it can be represented as a sum of cubes of several polynomials (in variable x) with integer coefficients. For example,the polynomials $x^{3}-1$ and $9 x^{3}-3 x^{2}+3 x+7=(x-1)^{3}+(2 x)^{3}+2^{3}$ are good.
a)Is the polynomial $P(x)=3 x+3 x^{7}$ good?
b)Is the polynomial $P(x)=3 x+3 x^{7}+3 x^{2008}$ good?

Justify your answers.
3 Let $A=\left\{\left(a_{1}, \ldots, a_{8}\right) \mid a_{i} \in \mathbb{N}, 1 \leq a_{i} \leq i+1\right.$ for each $\left.i=1,2 \ldots, 8\right\}$.A subset $X \subset A$ is called sparse if for each two distinct elements $\left(a_{1}, \ldots, a_{8}\right),\left(b_{1}, \ldots, b_{8}\right) \in X$, there exist at least three indices i,such that $a_{i} \neq b_{i}$.
Find the maximal possible number of elements in a sparse subset of set A.

Day 2

1 For each positive integer n, denote by $S(n)$ the sum of all digits in decimal representation of n. Find all positive integers n,such that $n=2 S(n)^{3}+8$.

2 Let $A_{1} A_{2}$ be the external tangent line to the nonintersecting cirlces $\omega_{1}\left(O_{1}\right)$ and $\omega_{2}\left(O_{2}\right), A_{1} \in$ $\omega_{1}, A_{2} \in \omega_{2}$.Points K is the midpoint of $A_{1} A_{2}$. And $K B_{1}$ and $K B_{2}$ are tangent lines to ω_{1} and ω_{2},respectvely $\left(B_{1} \neq A_{1}, B_{2} \neq A_{2}\right)$. Lines $A_{1} B_{1}$ and $A_{2} B_{2}$ meet in point L, and lines $K L$ and $O_{1} O_{2}$ meet in point P.
Prove that points B_{1}, B_{2}, P and L are concyclic.
3 Let a, b, c be positive integers for which $a b c=1$. Prove that $\sum \frac{1}{b(a+b)} \geq \frac{3}{2}$.

- \quad Grade level 2

