

AoPS Community

2008 International Zhautykov Olympiad

International Zhautykov Olympiad 2008

www.artofproblemsolving.com/community/c3738 by Erken, PhilAndrew

-	Senior
Day	1
1	Points K, L, M, N are repectively the midpoints of sides AB, BC, CD, DA in a convex quadrli- ateral $ABCD$.Line KM meets dioganals AC and BD at points P and Q ,respectively.Line LN meets dioganals AC and BD at points R and S ,respectively. Prove that if $AP \cdot PC = BQ \cdot QD$,then $AR \cdot RC = BS \cdot SD$.
2	A polynomial $P(x)$ with integer coefficients is called good, if it can be represented as a sum of cubes of several polynomials (in variable x) with integer coefficients. For example, the polynomials $x^3 - 1$ and $9x^3 - 3x^2 + 3x + 7 = (x - 1)^3 + (2x)^3 + 2^3$ are good. a)Is the polynomial $P(x) = 3x + 3x^7$ good? b)Is the polynomial $P(x) = 3x + 3x^7 + 3x^{2008}$ good? Justify your answers.
3	Let $A = \{(a_1, \ldots, a_8) a_i \in \mathbb{N} \text{, } 1 \leq a_i \leq i+1 \text{ for each } i = 1, 2 \ldots, 8\}$. A subset $X \subset A$ is called sparse if for each two distinct elements (a_1, \ldots, a_8) , $(b_1, \ldots, b_8) \in X$, there exist at least three indices <i>i</i> , such that $a_i \neq b_i$. Find the maximal possible number of elements in a sparse subset of set A .
Day	2
1	For each positive integer <i>n</i> ,denote by $S(n)$ the sum of all digits in decimal representation of <i>n</i> . Find all positive integers <i>n</i> ,such that $n = 2S(n)^3 + 8$.
2	Let A_1A_2 be the external tangent line to the nonintersecting cirlces $\omega_1(O_1)$ and $\omega_2(O_2), A_1 \in \omega_1, A_2 \in \omega_2$. Points K is the midpoint of A_1A_2 . And KB_1 and KB_2 are tangent lines to ω_1 and ω_2 , respectively ($B_1 \neq A_1, B_2 \neq A_2$). Lines A_1B_1 and A_2B_2 meet in point L , and lines KL and O_1O_2 meet in point P . Prove that points B_1, B_2, P and L are concyclic.
3	Let a, b, c be positive integers for which $abc = 1$. Prove that $\sum \frac{1}{b(a+b)} \ge \frac{3}{2}$.
-	Grade level 2