Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2009

www.artofproblemsolving.com/community/c3739
by Erken

Day 1

1 Find all pairs of integers (x, y), such that

$$
x^{2}-2009 y+2 y^{2}=0
$$

2 Find all real a, such that there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following inequality:

$$
x+a f(y) \leq y+f(f(x))
$$

for all $x, y \in \mathbb{R}$
3 For a convex hexagon $A B C D E F$ with an area S, prove that:

$$
A C \cdot(B D+B F-D F)+C E \cdot(B D+D F-B F)+A E \cdot(B F+D F-B D) \geq 2 \sqrt{3} S
$$

Day 2

1 On the plane, a Cartesian coordinate system is chosen. Given points $A_{1}, A_{2}, A_{3}, A_{4}$ on the parabola $y=x^{2}$, and points $B_{1}, B_{2}, B_{3}, B_{4}$ on the parabola $y=2009 x^{2}$. Points $A_{1}, A_{2}, A_{3}, A_{4}$ are concyclic, and points A_{i} and B_{i} have equal abscissas for each $i=1,2,3,4$. Prove that points $B_{1}, B_{2}, B_{3}, B_{4}$ are also concyclic.

2 Given a quadrilateral $A B C D$ with $\angle B=\angle D=90^{\circ}$. Point M is chosen on segment $A B$ so taht $A D=A M$. Rays $D M$ and $C B$ intersect at point N. Points H and K are feet of perpendiculars from points D and C to lines $A C$ and $A N$, respectively.
Prove that $\angle M H N=\angle M C K$.
3 In a checked 17×17 table, n squares are colored in black. We call a line any of rows, columns, or any of two diagonals of the table. In one step, if at least 6 of the squares in some line are black, then one can paint all the squares of this line in black.
Find the minimal value of n such that for some initial arrangement of n black squares one can paint all squares of the table in black in some steps.

