

AoPS Community

2009 International Zhautykov Olympiad

International Zhautykov Olympiad 2009

www.artofproblemsolving.com/community/c3739 by Erken

Day 1

1 Find all pairs of integers (x, y), such that

 $x^2 - 2009y + 2y^2 = 0$

2 Find all real *a*, such that there exist a function $f : \mathbb{R} \to \mathbb{R}$ satisfying the following inequality:

 $x + af(y) \le y + f(f(x))$

for all $x, y \in \mathbb{R}$

3 For a convex hexagon *ABCDEF* with an area *S*, prove that:

 $AC \cdot (BD + BF - DF) + CE \cdot (BD + DF - BF) + AE \cdot (BF + DF - BD) \ge 2\sqrt{3}S$

Day 2

- 1 On the plane, a Cartesian coordinate system is chosen. Given points A_1, A_2, A_3, A_4 on the parabola $y = x^2$, and points B_1, B_2, B_3, B_4 on the parabola $y = 2009x^2$. Points A_1, A_2, A_3, A_4 are concyclic, and points A_i and B_i have equal abscissas for each i = 1, 2, 3, 4. Prove that points B_1, B_2, B_3, B_4 are also concyclic.
- **2** Given a quadrilateral ABCD with $\angle B = \angle D = 90^{\circ}$. Point M is chosen on segment AB so taht AD = AM. Rays DM and CB intersect at point N. Points H and K are feet of perpendiculars from points D and C to lines AC and AN, respectively. Prove that $\angle MHN = \angle MCK$.
- In a checked 17 × 17 table, n squares are colored in black. We call a line any of rows, columns, or any of two diagonals of the table. In one step, if at least 6 of the squares in some line are black, then one can paint all the squares of this line in black.
 Find the minimal value of n such that for some initial arrangement of n black squares one can paint all squares of the table in black in some steps.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.