Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2010

www.artofproblemsolving.com/community/c3740
by Ovchinnikov Denis

Day 1

$1 \quad$ Find all primes p, q such that $p^{3}-q^{7}=p-q$.
2 In a cyclic quadrilateral $A B C D$ with $A B=A D$ points M, N lie on the sides $B C$ and $C D$ respectively so that $M N=B M+D N$. Lines $A M$ and $A N$ meet the circumcircle of $A B C D$ again at points P and Q respectively. Prove that the orthocenter of the triangle $A P Q$ lies on the segment $M N$.

3 A rectangle formed by the lines of checkered paper is divided into figures of three kinds: isosceles right triangles (1) with base of two units, squares (2) with unit side, and parallelograms (3) formed by two sides and two diagonals of unit squares (figures may be oriented in any way). Prove that the number of figures of the third kind is even.
http://up.iranblog.com/Files7/dda310bab8b6455f90ce.jpg

Day 2

1 Positive integers $1,2, \ldots, n$ are written on blackboard ($n>2$). Every minute two numbers are erased and the least prime divisor of their sum is written. In the end only the number 97 remains. Find the least n for which it is possible.

2 In every vertex of a regular n-gon exactly one chip is placed. At each step one can exchange any two neighbouring chips. Find the least number of steps necessary to reach the arrangement where every chip is moved by [$\left.\frac{n}{2}\right]$ positions clockwise from its initial position.

3 Let $A B C$ arbitrary triangle $(A B \neq B C \neq A C \neq A B)$ And $0, \mathrm{I}, \mathrm{H}$ it's circum-center, incenter and ortocenter (point of intersection altitudes). Prove, that

1) $\angle O I H>90^{\circ}$ (2 points)
2) $\angle O I H>135^{\circ}$ (7 points)
balls for 1) and 2) not additive.
