Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2011

www.artofproblemsolving.com/community/c3741
by wangsacl, ybalkas

Day 1 January 16th
1 Given is trapezoid $A B C D, M$ and N being the midpoints of the bases of $A D$ and $B C$, respectively.
a) Prove that the trapezoid is isosceles if it is known that the intersection point of perpendicular bisectors of the lateral sides belongs to the segment $M N$.
b) Does the statement of point a) remain true if it is only known that the intersection point of perpendicular bisectors of the lateral sides belongs to the line $M N$?

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy the equality,

$$
f(x+f(y))=f(x-f(y))+4 x f(y)
$$

for any $x, y \in \mathbb{R}$.
$3 \quad$ Let \mathbb{N} denote the set of all positive integers. An ordered pair $(a ; b)$ of numbers $a, b \in \mathbb{N}$ is called interesting, if for any $n \in \mathbb{N}$ there exists $k \in \mathbb{N}$ such that the number $a^{k}+b$ is divisible by 2^{n}. Find all interesting ordered pairs of numbers.

Day 2 January 17th
1 Find the maximum number of sets which simultaneously satisfy the following conditions:
i) any of the sets consists of 4 elements,
ii) any two different sets have exactly 2 common elements,
iii) no two elements are common to all the sets.

2 Let n be integer, $n>1$. An element of the set $M=\left\{1,2,3, \ldots, n^{2}-1\right\}$ is called good if there exists some element b of M such that $a b-b$ is divisible by n^{2}. Furthermore, an element a is called very good if $a^{2}-a$ is divisible by n^{2}. Let g denote the number of good elements in M and v denote the number of very good elements in M. Prove that

$$
v^{2}+v \leq g \leq n^{2}-n .
$$

3 Diagonals of a cyclic quadrilateral $A B C D$ intersect at point K. The midpoints of diagonals $A C$ and $B D$ are M and N, respectively. The circumscribed circles $A D M$ and $B C M$ intersect at
points M and L. Prove that the points K, L, M, and N lie on a circle. (all points are supposed to be different.)

