

AoPS Community

2012 International Zhautykov Olympiad

International Zhautykov Olympiad 2012

www.artofproblemsolving.com/community/c3742 by Amir Hossein

Day 1	
1	An acute triangle ABC is given. Let D be an arbitrary inner point of the side AB . Let M and N be the feet of the perpendiculars from D to BC and AC , respectively. Let H_1 and H_2 be the orthocentres of triangles MNC and MND , respectively. Prove that the area of the quadrilateral AH_1BH_2 does not depend on the position of D on AB .
2	A set of (unit) squares of a $n \times n$ table is called <i>convenient</i> if each row and each column of the table contains at least two squares belonging to the set. For each $n \ge 5$ determine the maximum m for which there exists a <i>convenient</i> set made of m squares, which becomes in <i>convenient</i> when any of its squares is removed.
3	Let P, Q, R be three polynomials with real coefficients such that
	P(Q(x)) + P(R(x)) = constant
	for all x. Prove that $P(x) = \text{constant}$ or $Q(x) + R(x) = \text{constant}$ for all x.
Day 2	
1	Do there exist integers m, n and a function $f \colon \mathbb{R} \to \mathbb{R}$ satisfying simultaneously the following two conditions?
	• i) $f(f(x)) = 2f(x) - x - 2$ for any $x \in \mathbb{R}$; • ii) $m \le n$ and $f(m) = n$.
2	Equilateral triangles ACB' and BDC' are drawn on the diagonals of a convex quadrilateral $ABCD$ so that B and B' are on the same side of AC , and C and C' are on the same sides of BD . Find $\angle BAD + \angle CDA$ if $B'C' = AB + CD$.
3	Find all integer solutions of the equation the equation $2x^2 - y^{14} = 1$.

🟟 AoPS Online 🟟 AoPS Academy 🐲 AoPS 🗱