Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2012

www.artofproblemsolving.com/community/c3742
by Amir Hossein

Day 1

$1 \quad$ An acute triangle $A B C$ is given. Let D be an arbitrary inner point of the side $A B$. Let M and N be the feet of the perpendiculars from D to $B C$ and $A C$, respectively. Let H_{1} and H_{2} be the orthocentres of triangles $M N C$ and $M N D$, respectively. Prove that the area of the quadrilateral $A H_{1} B H_{2}$ does not depend on the position of D on $A B$.

2 A set of (unit) squares of a $n \times n$ table is called convenient if each row and each column of the table contains at least two squares belonging to the set. For each $n \geq 5$ determine the maximum m for which there exists a convenient set made of m squares, which becomes inconvenient when any of its squares is removed.

3 Let P, Q, R be three polynomials with real coefficients such that

$$
P(Q(x))+P(R(x))=\mathrm{constant}
$$

for all x. Prove that $P(x)=$ constant or $Q(x)+R(x)=$ constant for all x.

Day 2

1 Do there exist integers m, n and a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying simultaneously the following two conditions?

- i) $f(f(x))=2 f(x)-x-2$ for any $x \in \mathbb{R}$; \bullet ii) $m \leq n$ and $f(m)=n$.

2 Equilateral triangles $A C B^{\prime}$ and $B D C^{\prime}$ are drawn on the diagonals of a convex quadrilateral $A B C D$ so that B and B^{\prime} are on the same side of $A C$, and C and C^{\prime} are on the same sides of $B D$. Find $\angle B A D+\angle C D A$ if $B^{\prime} C^{\prime}=A B+C D$.

3 Find all integer solutions of the equation the equation $2 x^{2}-y^{14}=1$.

