Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2013

www.artofproblemsolving.com/community/c3743
by Amir Hossein

Day 1 January 15th

1 Given a trapezoid $A B C D(A D \| B C)$ with $\angle A B C>90^{\circ}$. Point M is chosen on the lateral side $A B$. Let O_{1} and O_{2} be the circumcenters of the triangles $M A D$ and $M B C$, respectively. The circumcircles of the triangles $M O_{1} D$ and $M O_{2} C$ meet again at the point N. Prove that the line $O_{1} O_{2}$ passes through the point N.

2 Find all odd positive integers $n>1$ such that there is a permutation $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ of the numbers $1,2,3, \ldots, n$ where n divides one of the numbers $a_{k}^{2}-a_{k+1}-1$ and $a_{k}^{2}-a_{k+1}+1$ for each $k, 1 \leq k \leq n$ (we assume $a_{n+1}=a_{1}$).

3 Let a, b, c, and d be positive real numbers such that $a b c d=1$. Prove that

$$
\frac{(a-1)(c+1)}{1+b c+c}+\frac{(b-1)(d+1)}{1+c d+d}+\frac{(c-1)(a+1)}{1+d a+a}+\frac{(d-1)(b+1)}{1+a b+b} \geq 0 .
$$

Proposed by Orif Ibrogimov, Uzbekistan.

Day 2 January 16th

1 A quadratic trinomial $p(x)$ with real coefficients is given. Prove that there is a positive integer n such that the equation $p(x)=\frac{1}{n}$ has no rational roots.

2 Given convex hexagon $A B C D E F$ with $A B\|D E, B C\| E F$, and $C D \| F A$. The distance between the lines $A B$ and $D E$ is equal to the distance between the lines $B C$ and $E F$ and to the distance between the lines $C D$ and $F A$. Prove that the sum $A D+B E+C F$ does not exceed the perimeter of hexagon $A B C D E F$.

3 A 10×10 table consists of 100 unit cells. A block is a 2×2 square consisting of 4 unit cells of the table. A set C of n blocks covers the table (i.e. each cell of the table is covered by some block of C) but no $n-1$ blocks of C cover the table. Find the largest possible value of n.

