Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2014

www.artofproblemsolving.com/community/c3744
by KamalDoni, wws, mikolez

Day 1

1 Points M, N, K lie on the sides $B C, C A, A B$ of a triangle $A B C$, respectively, and are different from its vertices. The triangle $M N K$ is called beautiful if $\angle B A C=\angle K M N$ and $\angle A B C=$ $\angle K N M$. If in the triangle $A B C$ there are two beautiful triangles with a common vertex, prove that the triangle $A B C$ is right-angled.

Proposed by Nairi M. Sedrakyan, Armenia
2 Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following conditions:
(i) for each real y there is a real x such that $f(x)=y$, and
(ii) $f(f(x))=(x-1) f(x)+2$ for all real x ?

Proposed by Igor I. Voronovich, Belarus
3 Given are 100 different positive integers. We call a pair of numbers good if the ratio of these numbers is either 2 or 3 . What is the maximum number of good pairs that these 100 numbers can form? (A number can be used in several pairs.)
Proposed by Alexander S. Golovanov, Russia

Day 2

1 Does there exist a polynomial $P(x)$ with integral coefficients such that $P(1+\sqrt{3})=2+\sqrt{3}$ and $P(3+\sqrt{5})=3+\sqrt{5}$?

Proposed by Alexander S. Golovanov, Russia
2 Let $U=\{1,2, \ldots, 2014\}$. For positive integers a, b, c we denote by $f(a, b, c)$ the number of ordered 6-tuples of sets ($X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}$) satisfying the following conditions:
(i) $Y_{1} \subseteq X_{1} \subseteq U$ and $\left|X_{1}\right|=a$;
(ii) $Y_{2} \subseteq X_{2} \subseteq U \backslash Y_{1}$ and $\left|X_{2}\right|=b$;
(iii) $Y_{3} \subseteq X_{3} \subseteq U \backslash\left(Y_{1} \cup Y_{2}\right)$ and $\left|X_{3}\right|=c$.

Prove that $f(a, b, c)$ does not change when a, b, c are rearranged.
Proposed by Damir A. Yeliussizov, Kazakhstan
3 Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that
the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle.

Proposed by Nairi M. Sedrakyan, Armenia

