

AoPS Community

2014 International Zhautykov Olympiad

International Zhautykov Olympiad 2014

www.artofproblemsolving.com/community/c3744 by KamalDoni, wws, mikolez

Day 1

1 Points M, N, K lie on the sides BC, CA, AB of a triangle ABC, respectively, and are different from its vertices. The triangle MNK is called *beautiful* if $\angle BAC = \angle KMN$ and $\angle ABC = \angle KNM$. If in the triangle ABC there are two beautiful triangles with a common vertex, prove that the triangle ABC is right-angled.

Proposed by Nairi M. Sedrakyan, Armenia

2 Does there exist a function $f : \mathbb{R} \to \mathbb{R}$ satisfying the following conditions: (i) for each real y there is a real x such that f(x) = y, and (ii) f(f(x)) = (x - 1)f(x) + 2 for all real x?

Proposed by Igor I. Voronovich, Belarus

3 Given are 100 different positive integers. We call a pair of numbers *good* if the ratio of these numbers is either 2 or 3. What is the maximum number of good pairs that these 100 numbers can form? (A number can be used in several pairs.)

Proposed by Alexander S. Golovanov, Russia

Day 2

1 Does there exist a polynomial P(x) with integral coefficients such that $P(1 + \sqrt{3}) = 2 + \sqrt{3}$ and $P(3 + \sqrt{5}) = 3 + \sqrt{5}$?

Proposed by Alexander S. Golovanov, Russia

Let U = {1,2,...,2014}. For positive integers a, b, c we denote by f(a,b,c) the number of ordered 6-tuples of sets (X₁, X₂, X₃, Y₁, Y₂, Y₃) satisfying the following conditions:
(i) Y₁ ⊆ X₁ ⊆ U and |X₁| = a;
(ii) Y₂ ⊆ X₂ ⊆ U \ Y₁ and |X₂| = b;
(iii) Y₃ ⊆ X₃ ⊆ U \ (Y₁ ∪ Y₂) and |X₃| = c. Prove that f(a, b, c) does not change when a, b, c are rearranged.

Proposed by Damir A. Yeliussizov, Kazakhstan

3 Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that

AoPS Community

2014 International Zhautykov Olympiad

the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle.

Proposed by Nairi M. Sedrakyan, Armenia

Art of Problem Solving is an ACS WASC Accredited School.