Art of Problem Solving

AoPS Community

International Zhautykov Olympiad 2015

www.artofproblemsolving.com/community/c3745
by Sardor, zukazuk

Day 1

1 Each point with integral coordinates in the plane is coloured white or blue. Prove that one can choose a colour so that for every positive integer n there exists a triangle of area n having its vertices of the chosen colour.

2 Inside the triangle $A B C$ a point M is given. The line $B M$ meets the side $A C$ at N. The point K is symmetrical to M with respect to $A C$. The line $B K$ meets $A C$ at P. If $\angle A M P=\angle C M N$, prove that $\angle A B P=\angle C B N$.

3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(x^{3}+y^{3}+x y\right)=x^{2} f(x)+y^{2} f(y)+f(x y)$, for all $x, y \in \mathbb{R}$.

Day 2

1 Determine the maximum integer n such that for each positive integer $k \leq \frac{n}{2}$ there are two positive divisors of n with difference k.

2 Let A_{n} be the set of partitions of the sequence $1,2, \ldots, n$ into several subsequences such that every two neighbouring terms of each subsequence have different parity,and B_{n} the set of partitions of the sequence $1,2, \ldots, n$ into several subsequences such that all the terms of each subsequence have the same parity (for example,the partition $(1,4,5,8),(2,3),(6,9),(7)$ is an element of A_{9},and the partition $(1,3,5),(2,4),(6)$ is an element of $\left.B_{6}\right)$.
Prove that for every positive integer n the sets A_{n} and B_{n+1} contain the same number of elements.

3 The area of a convex pentagon $A B C D E$ is S, and the circumradii of the triangles $A B C, B C D$, $C D E, D E A, E A B$ are $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$. Prove the inequality

$$
R_{1}^{4}+R_{2}^{4}+R_{3}^{4}+R_{4}^{4}+R_{5}^{4} \geq \frac{4}{5 \sin ^{2} 108^{\circ}} S^{2}
$$

