AoPS Community

Indonesia TST 2010

www.artofproblemsolving.com/community/c3747
by augustin_p, parmenides51, orl, Agung, Orkhan-Ashraf_2002, April, Sayan, RagvaloD, Moron, Jeje, Raja Oktovin

- \quad Stage 2
- \quad Day 1

1 Find all functions $f: R \rightarrow R$ that satisfies

$$
x f(y)-y f(x)=f\left(\frac{y}{x}\right)
$$

for all $x, y \in R$.
2 Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P. Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

3 For every natural number n, define $s(n)$ as the smallest natural number so that for every natural number a relatively prime to n, this equation holds:

$$
a^{s(n)} \equiv 1(\bmod n)
$$

Find all natural numbers n such that $s(n)=2010$
4300 parliament members are divided into 3 chambers, each chamber consists of 100 members. For every 2 members, they either know each other or are strangers to each other.Show that no matter how they are divided into these 3 chambers, it is always possible to choose 2 members, each from different chamber such that there exist 17 members from the third chamber so that all of them knows these two members, or all of them are strangers to these two members.

- \quad Day 2

1 Sequence u_{n} is defined with $u_{0}=0, u_{1}=\frac{1}{3}$ and

$$
\frac{2}{3} u_{n}=\frac{1}{2}\left(u_{n+1}+u_{n-1}\right)
$$

$\forall n=1,2, \ldots$
Show that $\left|u_{n}\right| \leq 1 \forall n \in \mathbb{N}$.
2 Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $\operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$. Prove that $a_{n} \geq 2^{n}$ for all $n \geq 0$.

Proposed by Morteza Saghafian, Iran

3 Two parallel lines r, s and two points $P \in r$ and $Q \in s$ are given in a plane. Consider all pairs of circles $\left(C_{P}, C_{Q}\right)$ in that plane such that C_{P} touches r at P and C_{Q} touches s at Q and which touch each other externally at some point T. Find the locus of T.

4 Given $3 n$ cards, each of them will be written with a number from the following sequence:

$$
2,3, \ldots, n, n+1, n+3, n+4, \ldots, 2 n+1,2 n+2,2 n+4, \ldots, 3 n+3
$$

with each number used exactly once. Then every card is arranged from left to right in random order. Determine the probability such that for every i with $1 \leq i \leq 3 n$, the number written on the i-th card, counted from the left, is greater than or equal to i.

- Day 3

1 Given a, b, c positive real numbers satisfying $a+b+c=1$.
Prove that

$$
\frac{1}{\sqrt{a b+b c+c a}} \geq \sqrt{\frac{2 a}{3(b+c)}}+\sqrt{\frac{2 b}{3(c+a)}}+\sqrt{\frac{2 c}{3(a+b)}} \geq \sqrt{a}+\sqrt{b}+\sqrt{c}
$$

2 Find maximal numbers of planes, such there are 6 points and

1) 4 or more points lies on every plane.
2) No one line passes through 4 points.

3 Given acute triangle $A B C$ with circumcenter O and the center of nine-point circle N. Point N_{1} are given such that $\angle N A B=\angle N_{1} A C$ and $\angle N B C=\angle N_{1} B A$. Perpendicular bisector of segment $O A$ intersects the line $B C$ at A_{1}. Analogously define B_{1} and C_{1}. Show that all three points A_{1}, B_{1}, C_{1} are collinear at a line that is perpendicular to $O N_{1}$.

4 How many natural numbers (a, b, n) with $\operatorname{gcd}(a, b)=1$ and $n>1$ such that the equation

$$
x^{a n}+y^{b n}=2^{2010}
$$

has natural numbers solution (x, y)

- Day 4

1 find all pairs of relatively prime natural numbers (m, n) in such a way that there exists non constant polynomial f satisfying

$$
g c d(a+b+1, m f(a)+n f(b)>1
$$

for every natural numbers a and b
2 Let T be a tree with n vertices. Choose a positive integer k where $1 \leq k \leq n$ such that S_{k} is a subset with k elements from the vertices in T. For all $S \in S_{k}$, define $c(S)$ to be the number of component of graph from S if we erase all vertices and edges in T, except all vertices and edges in S. Determine $\sum_{S \in S_{k}} c(S)$, expressed in terms of n and k.

3 Given a non-isosceles triangle $A B C$ with incircle k with center S. k touches the side $B C, C A, A B$ at P, Q, R respectively. The line $Q R$ and line $B C$ intersect at M. A circle which passes through B and C touches k at N. The circumcircle of triangle $M N P$ intersects $A P$ at L. Prove that S, L, M are collinear.

4 Given a positive integer n and $I=\{1,2, \ldots, k\}$ with k is a positive integer.
Given positive integers $a_{1}, a_{2}, \ldots, a_{k}$ such that for all $i \in I: 1 \leq a_{i} \leq n$ and

$$
\sum_{i=1}^{k} a_{i} \geq 2(n!)
$$

Show that there exists $J \subseteq I$ such that

$$
n!+1 \geq \sum_{j \in J} a_{j}>\sqrt{n!+(n-1) n}
$$

- Day 5

1 Find all triplets of real numbers (x, y, z) that satisfies the system of equations $x^{5}=2 y^{3}+y-2$ $y^{5}=2 z^{3}+z-2 z^{5}=2 x^{3}+x-2$

2 A government's land with dimensions $n \times n$ are going to be sold in phases. The land is divided into n^{2} squares with dimension 1×1. In the first phase, n farmers bought a square, and for each rows and columns there is only one square that is bought by a farmer. After one season, each farmer could buy one more square, with the conditions that the newly-bought square has a common side with the farmer's land and it hasn't been bought by other farmers. Determine all values of n such that the government's land could not be entirely sold within n seasons.

3 Let $A B C D$ be a convex quadrilateral with $A B$ is not parallel to $C D$. Circle ω_{1} with center O_{1} passes through A and B, and touches segment $C D$ at P. Circle ω_{2} with center O_{2} passes through C and D, and touches segment $A B$ at Q. Let E and F be the intersection of circles ω_{1} and ω_{2}. Prove that $E F$ bisects segment $P Q$ if and only if $B C$ is parallel to $A D$.

4 Let n be a positive integer with $n=p^{2010} q^{2010}$ for two odd primes p and q. Show that there exist exactly $\sqrt[2010]{n}$ positive integers $x \leq n$ such that $p^{2010} \mid x^{p}-1$ and $q^{2010} \mid x^{q}-1$.

- \quad Stage 1

- \quad Day 1

1 Let a, b, and c be non-negative real numbers and let x, y, and z be positive real numbers such that $a+b+c=x+y+z$. Prove that

$$
\frac{a^{3}}{x^{2}}+\frac{b^{3}}{y^{2}}+\frac{c^{3}}{z^{2}} \geq a+b+c .
$$

Hery Susanto, Malang
2 Let $A=\left\{n: 1 \leq n \leq 2009^{2009}, n \in \mathbb{N}\right\}$ and let $S=\left\{n: n \in A, \operatorname{gcd}\left(n, 2009^{2009}\right)=1\right\}$. Let P be the product of all elements of S. Prove that

$$
P \equiv 1 \quad\left(\bmod 2009^{2009}\right) .
$$

Nanang Susyanto, Jogjakarta

3 In a party, each person knew exactly 22 other persons. For each two persons X and Y, if X and Y knew each other, there is no other person who knew both of them, and if X and Y did not know each other, there are exactly 6 persons who knew both of them. Assume that X knew Y iff Y knew X. How many people did attend the party?
Yudi Satria, Jakarta
4 Let $A B C$ be a non-obtuse triangle with $C H$ and $C M$ are the altitude and median, respectively. The angle bisector of $\angle B A C$ intersects $C H$ and $C M$ at P and Q, respectively. Assume that

$$
\angle A B P=\angle P B Q=\angle Q B C
$$

(a) prove that $A B C$ is a right-angled triangle, and
(b) calculate $\frac{B P}{C H}$.

Soewono, Bandung

- \quad Day 2

1 Let $A B C D$ be a trapezoid such that $A B \| C D$ and assume that there are points E on the line outside the segment $B C$ and F on the segment $A D$ such that $\angle D A E=\angle C B F$. Let I, J, K respectively be the intersection of line $E F$ and line $C D$, the intersection of line $E F$ and line $A B$, and the midpoint of segment $E F$. Prove that K is on the circumcircle of triangle $C D J$ if and only if I is on the circumcircle of triangle $A B K$.
Utari Wijayanti, Bandung
2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f\left(x^{3}+y^{3}\right)=x f\left(x^{2}\right)+y f\left(y^{2}\right)
$$

for all real numbers x and y.
Hery Susanto, Malang
3 Let x, y, and z be integers satisfying the equation

$$
\frac{2008}{41 y^{2}}=\frac{2 z}{2009}+\frac{2007}{2 x^{2}}
$$

Determine the greatest value that z can take.
Budi Surodjo, Jogjakarta
4 For each positive integer n, define $f(n)$ as the number of digits 0 in its decimal representation. For example, $f(2)=0, f(2009)=2$, etc. Please, calculate

$$
S=\sum_{k=1}^{n} 2^{f(k)}
$$

for $n=9,999,999,999$.
Yudi Satria, Jakarta

- Day 3

1 Let f be a polynomial with integer coefficients. Assume that there exists integers a and b such that $f(a)=41$ and $f(b)=49$. Prove that there exists an integer c such that 2009 divides $f(c)$. Nanang Susyanto, Jogjakarta

2 Given an equilateral triangle, all points on its sides are colored in one of two given colors. Prove that the is a right-angled triangle such that its three vertices are in the same color and on the sides of the equilateral triangle.
Alhaji Akbar, Jakarta
3 Let a_{1}, a_{2}, \ldots be sequence of real numbers such that $a_{1}=1, a_{2}=\frac{4}{3}$, and

$$
a_{n+1}=\sqrt{1+a_{n} a_{n-1}}, \quad \forall n \geq 2
$$

Prove that for all $n \geq 2$,

$$
a_{n}^{2}>a_{n-1}^{2}+\frac{1}{2}
$$

and

$$
1+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}>2 a_{n} .
$$

Fajar Yuliawan, Bandung
4 Let $A B C$ be an acute-angled triangle such that there exist points D, E, F on side $B C, C A, A B$, respectively such that the inradii of triangle $A E F, B D F, C D E$ are all equal to r_{0}. If the inradii of triangle $D E F$ and $A B C$ are r and R, respectively, prove that

$$
r+r_{0}=R .
$$

Soewono, Bandung

- Day 4

1 The integers $1,2, \ldots, 20$ are written on the blackboard. Consider the following operation as one step: [i]choose two integers a and b such that $a-b \geq 2$ and replace them with $a-1$ and $b+1[/ \mathrm{i}]$. Please, determine the maximum number of steps that can be done.
Yudi Satria, Jakarta
2 Circles Γ_{1} and Γ_{2} are internally tangent to circle Γ at P and Q, respectively. Let P_{1} and Q_{1} are on Γ_{1} and Γ_{2} respectively such that $P_{1} Q_{1}$ is the common tangent of P_{1} and Q_{1}. Assume that Γ_{1} and Γ_{2} intersect at R and R_{1}. Define O_{1}, O_{2}, O_{3} as the intersection of $P Q$ and $P_{1} Q_{1}$, the intersection of $P R$ and $P_{1} R_{1}$, and the intersection $Q R$ and $Q_{1} R_{1}$. Prove that the points O_{1}, O_{2}, O_{3} are collinear.
Rudi Adha Prihandoko, Bandung
3 Determine all real numbers a such that there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
x+f(y)=a f(y+f(x))
$$

for all real numbers x and y.
Hery Susanto, Malang
4 Prove that for all integers m and n, the inequality

$$
\frac{\phi\left(\operatorname{gcd}\left(2^{m}+1,2^{n}+1\right)\right)}{\operatorname{gcd}\left(\phi\left(2^{m}+1\right), \phi\left(2^{n}+1\right)\right)} \geq \frac{2 \operatorname{gcd}(m, n)}{2^{\operatorname{gcd}(m, n)}}
$$

holds.
Nanang Susyanto, Jogjakarta

- \quad Day 5

1 Is there a triangle with angles in ratio of 1:2:4 and the length of its sides are integers with at least one of them is a prime number?
Nanang Susyanto, Jogjakarta
2 Consider a polynomial with coefficients of real numbers $\phi(x)=a x^{3}+b x^{2}+c x+d$ with three positive real roots. Assume that $\phi(0)<0$, prove that

$$
2 b^{3}+9 a^{2} d-7 a b c \leq 0
$$

Hery Susanto, Malang

$3 \quad$ Let \mathbb{Z} be the set of all integers. Define the set \mathbb{H} as follows:
(1). $\frac{1}{2} \in \mathbb{H}$,
(2). if $x \in \mathbb{H}$, then $\frac{1}{1+x} \in \mathbb{H}$ and also $\frac{x}{1+x} \in \mathbb{H}$.

Prove that there exists a bijective function $f: \mathbb{Z} \rightarrow \mathbb{H}$.
4 Prove that the number $(\underbrace{9999 \ldots 99}_{2005})^{2009}$ can be obtained by erasing some digits of $(\underbrace{9999 \ldots 99}_{2008})^{2009}$ (both in decimal representation).
Yudi Satria, Jakarta

