

## AoPS Community 1998 Federal Competition For Advanced Students, Part 2

### Federal Competition For Advanced Students, Part 2 1998

www.artofproblemsolving.com/community/c3753 by Amir Hossein

#### Day 1

1 Let  $a \ge 0$  be a natural number. Determine all rational x, so that

$$\sqrt{1 + (a-1)\sqrt[3]{x}} = \sqrt{1 + (a-1)\sqrt{x}}$$

All occurring square roots, are not negative.

**Note.** It seems the set of natural numbers =  $\mathbb{N} = \{0, 1, 2, ...\}$  in this problem.

- **2** Let  $Q_n$  be the product of the squares of even numbers less than or equal to n and  $K_n$  equal to the product of cubes of odd numbers less than or equal to n. What is the highest power of 98, that **a**) $Q_n$ , **b**)  $K_n$  or **c**)  $Q_n K_n$  divides? If one divides  $Q_{98}K_{98}$  by the highest power of 98, then one get a number N. By which power-of-two number is N still divisible?
- **3** Let  $a_n$  be a sequence recursively defined by  $a_0 = 0, a_1 = 1$  and  $a_{n+2} = a_{n+1} + a_n$ . Calculate the sum of  $a_n \left(\frac{2}{5}\right)^n$  for all positive integers n. For what value of the base b we get the sum 1?

#### Day 2

- **1** Let *M* be the set of the vertices of a regular hexagon, our Olympiad symbol. How many chains  $\emptyset \subset A \subset B \subset C \subset D \subset M$  of six different set, beginning with the empty set and ending with the *M*, are there?
- **2** Let  $P(x) = x^3 px^2 + qx r$  be a cubic polynomial with integer roots a, b, c.

(a) Show that the greatest common divisor of p, q, r is equal to 1 if the greatest common divisor of a, b, c is equal to 1.

- (b) What are the roots of polynomial  $Q(x) = x^3 98x^2 + 98sx 98t$  with s, t positive integers.
- **3** In a parallelogram ABCD with the side ratio  $AB : BC = 2 : \sqrt{3}$  the normal through D to AC and the normal through C to AB intersects in the point E on the line AB. What is the relationship between the lengths of the diagonals AC and BD?

# AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬