Art of Problem Solving

AoPS Community
 1999 Federal Competition For Advanced Students, Part 2

Federal Competition For Advanced Students, Part 21999

www.artofproblemsolving.com/community/c3754
by Amir Hossein

Day 1

1 Prove that for each positive integer n, the sum of the numbers of digits of 4^{n} and of 25^{n} (in the decimal system) is odd.

2 Let ϵ be a plane and k_{1}, k_{2}, k_{3} be spheres on the same side of ϵ. The spheres k_{1}, k_{2}, k_{3} touch the plane at points T_{1}, T_{2}, T_{3}, respectively, and k_{2} touches k_{1} at S_{1} and k_{3} at S_{3}. Prove that the lines $S_{1} T_{1}$ and $S_{3} T_{3}$ intersect on the sphere k_{2}. Describe the locus of the intersection point.

3 Find all pairs (x, y) of real numbers such that

$$
y^{2}-[x]^{2}=19.99 \text { and } x^{2}+[y]^{2}=1999
$$

where $f(x)=[x]$ is the floor function.

Day 2

1 Ninety-nine points are given on one of the diagonals of a unit square. Prove that there is at most one vertex of the square such that the average squared distance from a given point to the vertex is less than or equal to $1 / 2$.

2 Given a real number A and an integer n with $2 \leq n \leq 19$, find all polynomials $P(x)$ with real coefficients such that $P(P(P(x)))=A x^{n}+19 x+99$.
$3 \quad$ Two players A and B play the following game. An even number of cells are placed on a circle. A begins and A and B play alternately, where each move consists of choosing a free cell and writing either O or M in it. The player after whose move the word $O M O$ (OMO = Osterreichische Mathematik Olympiade) occurs for the first time in three successive cells wins the game. If no such word occurs, then the game is a draw. Prove that if player B plays correctly, then player A cannot win.

