

AoPS Community 1999 Federal Competition For Advanced Students, Part 2

Federal Competition For Advanced Students, Part 2 1999

www.artofproblemsolving.com/community/c3754 by Amir Hossein

Day 1	
1	Prove that for each positive integer n , the sum of the numbers of digits of 4^n and of 25^n (in the decimal system) is odd.
2	Let ϵ be a plane and k_1, k_2, k_3 be spheres on the same side of ϵ . The spheres k_1, k_2, k_3 touch the plane at points T_1, T_2, T_3 , respectively, and k_2 touches k_1 at S_1 and k_3 at S_3 . Prove that the lines S_1T_1 and S_3T_3 intersect on the sphere k_2 . Describe the locus of the intersection point.
3	Find all pairs (x, y) of real numbers such that
	$y^2 - [x]^2 = 19.99$ and $x^2 + [y]^2 = 1999$
	where $f(x) = [x]$ is the floor function.
Day 2	
1	Ninety-nine points are given on one of the diagonals of a unit square. Prove that there is at most one vertex of the square such that the average squared distance from a given point to the vertex is less than or equal to $1/2$.
2	Given a real number A and an integer n with $2 \le n \le 19$, find all polynomials $P(x)$ with real coefficients such that $P(P(P(x))) = Ax^n + 19x + 99$.
3	Two players <i>A</i> and <i>B</i> play the following game. An even number of cells are placed on a circle. <i>A</i> begins and <i>A</i> and <i>B</i> play alternately, where each move consists of choosing a free cell and writing either <i>O</i> or <i>M</i> in it. The player after whose move the word <i>OMO</i> (OMO = <i>Osterreichische Mathematik Olympiade</i>) occurs for the first time in three successive cells wins the game. If no such word occurs, then the game is a draw. Prove that if player <i>B</i> plays correctly, then player <i>A</i> cannot win.

Act of Problem Solving is an ACS WASC Accredited School.