## AoPS Community

## Federal Competition For Advanced Students, Part 22000

www.artofproblemsolving.com/community/c3755
by Amir Hossein

## Day 1

1 The sequence an is defined by $a_{0}=4, a_{1}=1$ and the recurrence formula $a_{n+1}=a_{n}+6 a_{n-1}$. The sequence $b_{n}$ is given by

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} .
$$

Find the coefficients $\alpha, \beta$ so that $b_{n}$ satisfies the recurrence formula $b_{n+1}=\alpha b_{n}+\beta b_{n-1}$. Find the explicit form of $b_{n}$.

2 A trapezoid $A B C D$ with $A B \| C D$ is inscribed in a circle $k$. Points $P$ and $Q$ are chose on the arc $A D C B$ in the order $A-P-Q-B$. Lines $C P$ and $A Q$ meet at $X$, and lines $B P$ and $D Q$ meet at $Y$. Show that points $P, Q, X, Y$ lie on a circle.

3 Find all real solutions to the equation

$$
\left|\left|\left|\left|\left|\left|\left|\left|x^{2}-x-1\right|-3\right|-5\right|-7\right|-9\right|-11\right|-13\right|=x^{2}-2 x-48 .\right.
$$

## Day 2

1 In a non-equilateral acute-angled triangle $A B C$ with $\angle C=60^{\circ}, U$ is the circumcenter, $H$ the orthocenter and $D$ the intersection of $A H$ and $B C$. Prove that the Euler line $H U$ bisects the angle $B H D$.

2 Find all pairs of integers $(m, n)$ such that

$$
\left|\left(m^{2}+2000 m+999999\right)-\left(3 n^{3}+9 n^{2}+27 n\right)\right|=1 .
$$

3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all reals $x, y, z$ it holds that

$$
f(x+f(y+z))+f(f(x+y)+z)=2 y .
$$

