Art of Problem Solving

AoPS Community

Federal Competition For Advanced Students, Part 22001

www.artofproblemsolving.com/community/c3756
by Amir Hossein

Day 1

1 Prove that $\frac{1}{25} \sum_{k=0}^{2001}\left[\frac{2^{k}}{25}\right]$ is a positive integer.
2 Determine all triples of positive real numbers (x, y, z) such that

$$
\begin{gathered}
x+y+z=6 \\
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2-\frac{4}{x y z} .
\end{gathered}
$$

3 A triangle $A B C$ is inscribed in a circle with center U and radius r. A tangent c^{\prime} to a larger circle $K(U, 2 r)$ is drawn so that C lies between the lines $c=A B$ and C^{\prime}. Lines a^{\prime} and b^{\prime} are analogously defined. The triangle formed by $a^{\prime}, b^{\prime}, c^{\prime}$ is denoted $A^{\prime} B^{\prime} C^{\prime}$. Prove that the three lines, joining the midpoints of pairs of parallel sides of the two triangles, have a common point.

Day 2

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real x, y

$$
f\left(f(x)^{2}+f(y)\right)=x f(x)+y .
$$

2 Determine all integers m for which all solutions of the equation $3 x^{3}-3 x^{2}+m=0$ are rational.

3 Let be given a semicircle with the diameter $A B$, and points C, D on it such that $A C=C D$. The tangent at C intersects the line $B D$ at E. The line $A E$ intersects the arc of the semicircle at F. Prove that $C F<F D$.

