Art of Problem Solving

AoPS Community

Federal Competition For Advanced Students, Part 22002

www.artofproblemsolving.com/community/c3757
by Amir Hossein

Day 1

1 Consider all possible rectangles that can be drawn on a 8×8 chessboard, covering only whole cells. Calculate the sum of their areas.

What formula is obtained if 8×8 is replaced with $a \times b$, where a, b are positive integers?
2 Let b be a positive integer. Find all 2002tuples $\left(a_{1}, a_{2}, \ldots, a_{2002}\right)$, of natural numbers such that

$$
\sum_{j=1}^{2002} a_{j}^{a_{j}}=2002 b^{b}
$$

3 Let $A B C D$ and $A E F G$ be two similar cyclic quadrilaterals (with the vertices denoted counterclockwise). Their circumcircles intersect again at point P. Prove that P lies on line $B E$.

Day 2

1 Find all polynomials $P(x)$ of the smallest possible degree with the following properties:
(i) The leading coefficient is 200 ;
(ii) The coefficient at the smallest non-vanishing power is 2 ;
(iii) The sum of all the coefficients is 4;
(iv) $P(-1)=0, P(2)=6, P(3)=8$.

2 In the net drawn below, in how many ways can one reach the point $3 n+1$ starting from the point 1 so that the labels of the points on the way increase?

3 Let H be the orthocenter of an acute-angled triangle $A B C$. Show that the triangles $A B H, B C H$ and $C A H$ have the same perimeter if and only if the triangle $A B C$ is equilateral.

