Art of Problem Solving

AoPS Community
 2003 Federal Competition For Advanced Students, Part 2

Federal Competition For Advanced Students, Part 22003

www.artofproblemsolving.com/community/c3758
by Amir Hossein

Day 1

1 Consider the polynomial $P(n)=n^{3}-n^{2}-5 n+2$. Determine all integers n for which $P(n)^{2}$ is a square of a prime.

I'm not sure if the statement of this problem is correct, because if $P(n)^{2}$ be a square of a prime, then $P(n)$ should be that prime, and I don't think the problem means that.

2 Let a, b, c be nonzero real numbers for which there exist $\alpha, \beta, \gamma \in\{-1,1\}$ with $\alpha a+\beta b+\gamma c=0$. What is the smallest possible value of

$$
\left(\frac{a^{3}+b^{3}+c^{3}}{a b c}\right)^{2} ?
$$

3 For every lattice point (x, y) with x, y non-negative integers, a square of side $\frac{0.9}{2^{x} 5^{y}}$ with center at the point (x, y) is constructed. Compute the area of the union of all these squares.

Day 2

1 Prove that, for any integer $g>2$, there is a unique three-digit number $\overline{a b c}_{g}$ in base g whose representation in some base $h=g \pm 1$ is $\overline{c b a}_{h}$.

2 We are given sufficiently many stones of the forms of a rectangle 2×1 and square 1×1. Let $n>3$ be a natural number. In how many ways can one tile a rectangle $3 \times n$ using these stones, so that no two 2×1 rectangles have a common point, and each of them has the longer side parallel to the shorter side of the big rectangle?

3 Let $A B C$ be an acute-angled triangle. The circle k with diameter $A B$ intersects $A C$ and $B C$ again at P and Q, respectively. The tangents to k at A and Q meet at R, and the tangents at B and P meet at S. Show that C lies on the line $R S$.

