

AoPS Community 2005 Federal Competition For Advanced Students, Part 2

Federal Competition For Advanced Students, Part 2 2005

www.artofproblemsolving.com/community/c3759 by ddziabenko

Day 1

1	Find all triples (a, b, c) of natural numbers, such that $LCM(a, b, c) = a + b + c$
2	Prove that for all positive reals a, b, c, d , we have $\frac{a+b+c+d}{abcd} \leq \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} + \frac{1}{d^3}$
3	Triangle DEF is acute. Circle c_1 is drawn with DF as its diameter and circle c_2 is drawn with DE as its diameter. Points Y and Z are on DF and DE respectively so that EY and FZ are altitudes of triangle DEF . EY intersects c_1 at P , and FZ intersects c_2 at Q . EY extended intersects c_1 at R , and FZ extended intersects c_2 at S . Prove that P , Q , R , and S are concyclic points.
Day 2	2
1	The function $f: (0,2005) \rightarrow N$ has the properties that $f(2x + 1) = f(2x)$, $f(3x + 1) = f(3x)$ and $f(5x + 1) = f(5x)$ with $x \in (0, 1, 2,, 2005)$. How many different values can the function assume?
2	Find all real a, b, c, d, e, f that satisfy the system $4a = (b + c + d + e)^4 4b = (c + d + e + f)^4 4c = (d + e + f + a)^4 4d = (e + f + a + b)^4 4e = (f + a + b + c)^4 4f = (a + b + c + d)^4$
3	Let Q be a point inside a cube. Prove that there are infinitely many lines l so that $AQ = BQ$ where A and B are the two points of intersection of l and the surface of the cube

AOPSOnline AOPSAcademy AOPS