Art of Problem Solving

AoPS Community

Federal Competition For Advanced Students, Part 22005

www.artofproblemsolving.com/community/c3759
by ddziabenko

Day 1

1 Find all triples (a, b, c) of natural numbers, such that $L C M(a, b, c)=a+b+c$
2 Prove that for all positive reals a, b, c, d, we have $\frac{a+b+c+d}{a b c d} \leq \frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{d^{3}}$
3 Triangle $D E F$ is acute. Circle c_{1} is drawn with $D F$ as its diameter and circle c_{2} is drawn with $D E$ as its diameter. Points Y and Z are on $D F$ and $D E$ respectively so that $E Y$ and $F Z$ are altitudes of triangle $D E F$. $E Y$ intersects c_{1} at P, and $F Z$ intersects c_{2} at Q. $E Y$ extended intersects c_{1} at R, and $F Z$ extended intersects c_{2} at S. Prove that P, Q, R, and S are concyclic points.

Day 2

1 The function $f:(0, \ldots 2005) \rightarrow N$ has the properties that $f(2 x+1)=f(2 x), f(3 x+1)=f(3 x)$ and $f(5 x+1)=f(5 x)$ with $x \in(0,1,2, \ldots, 2005)$. How many different values can the function assume?

2 Find all real a, b, c, d, e, f that satisfy the system $4 a=(b+c+d+e)^{4} 4 b=(c+d+e+f)^{4}$ $4 c=(d+e+f+a)^{4} 4 d=(e+f+a+b)^{4} 4 e=(f+a+b+c)^{4} 4 f=(a+b+c+d)^{4}$

3 Let Q be a point inside a cube. Prove that there are infinitely many lines l so that $A Q=B Q$ where A and B are the two points of intersection of l and the surface of the cube.

