Art of Problem Solving

AoPS Community 2006 Federal Competition For Advanced Students, Part 2

Federal Competition For Advanced Students, Part 22006

www.artofproblemsolving.com/community/c3760
by FelixD

Day 1

1 Let N be a positive integer. How many non-negative integers $n \leq N$ are there that have an integer multiple, that only uses the digits 2 and 6 in decimal representation?

2 Let a, b, c be positive real numbers. Show that $3(a+b+c) \geq 8 \sqrt[3]{a b c}+\sqrt[3]{\frac{a^{3}+b^{3}+c^{3}}{3}}$.
3 The triangle $A B C$ is given. On the extension of the side $A B$ we construct the point R with $B R=B C$, where $A R>B R$ and on the extension of the side $A C$ we construct the point S with $C S=C B$, where $A S>C S$. Let A_{1} be the point of intersection of the diagonals of the quadrilateral $B R S C$.
Analogous we construct the point T on the extension of the side $B C$, where $C T=C A$ and $B T>C T$ and on the extension of the side $B A$ we construct the point U with $A U=A C$, where $B U>A U$. Let B_{1} be the point of intersection of the diagonals of the quadrilateral $C T U A$.
Likewise we construct the point V on the extension of the side $C A$, where $A V=A B$ and $C V>A V$ and on the extension of the side $C B$ we construct the point W with $B W=B A$ and $C W>B W$. Let C_{1} be the point of intersection of the diagonals of the quadrilateral $A V W B$. Show that the area of the hexagon $A C_{1} B A_{1} C B_{1}$ is equal to the sum of the areas of the triangles $A B C$ and $A_{1} B_{1} C_{1}$.

Day 2

$1 \quad$ For which rational x is the number $1+105 \cdot 2^{x}$ the square of a rational number?
2 Find all monotonous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following functional equation:

$$
f(f(x))=f(-f(x))=f(x)^{2} .
$$

3 Let A be an integer not equal to 0 . Solve the following system of equations in $\mathbb{Z}^{3} \cdot x+y^{2}+z^{3}=A$ $\frac{1}{x}+\frac{1}{y^{2}}+\frac{1}{z^{3}}=\frac{1}{A} x y^{2} z^{3}=A^{2}$

