Art of Problem Solving

AoPS Community

2007 Federal Competition For Advanced Students, Part 2

Federal Competition For Advanced Students, Part 22007

www.artofproblemsolving.com/community/c3761
by FelixD, valerie

Day 1

1 For which non-negative integers $a<2007$ the congruence $x^{2}+a \equiv 0 \bmod 2007$ has got exactly two different non-negative integer solutions?
That means, that there exist exactly two different non-negative integers u and v less than 2007, such that $u^{2}+a$ and $v^{2}+a$ are both divisible by 2007 .

2 Find all tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ of non-negative integers, such that the following system of equations holds: $x_{1} x_{2}\left(1-x_{3}\right)=x_{4} x_{5}$
$x_{2} x_{3}\left(1-x_{4}\right)=x_{5} x_{6}$
$x_{3} x_{4}\left(1-x_{5}\right)=x_{6} x_{1}$
$x_{4} x_{5}\left(1-x_{6}\right)=x_{1} x_{2}$
$x_{5} x_{6}\left(1-x_{1}\right)=x_{2} x_{3}$
$x_{6} x_{1}\left(1-x_{2}\right)=x_{3} x_{4}$
3 Determine all rhombuses $A B C D$ with the given length $2 a$ of ist sides by giving the angle $\alpha=$ $\angle B A D$, such that there exists a circle which cuts each side of the rhombus in a chord of length a.

Day 2

1 Let M be the set of all polynomials $P(x)$ with pairwise distinct integer roots, integer coefficients and all absolut values of the coefficients less than 2007. Which is the highest degree among all the polynomials of the set M ?

2 38th Austrian Mathematical Olympiad 2007, round 3 problem 5
Given is a convex n-gon with a triangulation, that is a partition into triangles through diagonals that dont cut each other. Show that its always possible to mark the n corners with the digits of the number 2007 such that every quadrilateral consisting of 2 neighbored (along an edge) triangles has got 9 as the sum of the numbers on its 4 corners.

3 The triangle $A B C$ with the circumcircle $k(U, r)$ is given. On the extension of the radii $U A$ a point P is chosen. The reflection of the line $P B$ on the line $B A$ is called g. Likewise the reflection of the line $P C$ on the line $C A$ is called h. The intersection of g and h is called Q.
Find the geometric location of all possible intersections Q, while P passes through the extension of the radii $U A$.

