Art of Problem Solving

AoPS Community
 2008 Federal Competition For Advanced Students, Part 2

Federal Competition For Advanced Students, Part 22008

www.artofproblemsolving.com/community/c3762
by April

Day 1

1 Prove the inequality

$$
\sqrt{a^{1-a} b^{1-b} c^{1-c}} \leq \frac{1}{3}
$$

holds for all positive real numbers a, b and c with $a+b+c=1$.
2 (a) Does there exist a polynomial $P(x)$ with coefficients in integers, such that $P(d)=\frac{2008}{d}$ holds for all positive divisors of 2008?
(b) For which positive integers n does a polynomial $P(x)$ with coefficients in integers exists, such that $P(d)=\frac{n}{d}$ holds for all positive divisors of n ?
$3 \quad$ We are given a line g with four successive points P, Q, R, S, reading from left to right. Describe a straightedge and compass construction yielding a square $A B C D$ such that P lies on the line $A D, Q$ on the line $B C, R$ on the line $A B$ and S on the line $C D$.

Day 2

1 Determine all functions f mapping the set of positive integers to the set of non-negative integers satisfying the following conditions:
(1) $f(m n)=f(m)+f(n)$,
(2) $f(2008)=0$, and
(3) $f(n)=0$ for all $n \equiv 39(\bmod 2008)$.

2 Which positive integers are missing in the sequence $\left\{a_{n}\right\}$, with $a_{n}=n+[\sqrt{n}]+[\sqrt[3]{n}]$ for all $n \geq 1$? ($[x]$ denotes the largest integer less than or equal to x, i.e. g with $g \leq x<g+1$.)

3 We are given a square $A B C D$. Let P be a point not equal to a corner of the square or to its center M. For any such P, we let E denote the common point of the lines $P D$ and $A C$, if such a point exists. Furthermore, we let F denote the common point of the lines $P C$ and $B D$, if such a point exists. All such points P, for which E and F exist are called acceptable points. Determine the set of all acceptable points, for which the line $E F$ is parallel to $A D$.

