AoPS Community

Federal Competition For Advanced Students, Part 22011

www.artofproblemsolving.com/community/c3763
by Martin N .

Day 1

1 Every brick has 5 holes in a line. The holes can be filled with bolts (fitting in one hole) and braces (fi tting into two neighboring holes). No hole may remain free.
One puts n of these bricks in a line to form a pattern from left to right. In this line no two braces and no three bolts may be adjacent.
How many diff erent such patterns can be produced with n bricks?
2 We consider permutations f of the set \mathbb{N} of non-negative integers, i.e. bijective maps f from \mathbb{N} to \mathbb{N}, with the following additional properties:

$$
f(f(x))=x \quad \text { and } \quad|f(x)-x| \leqslant 3 \quad \text { for all } x \in \mathbb{N} .
$$

Further, for all integers $n>42$,

$$
M(n)=\frac{1}{n+1} \sum_{j=0}^{n}|f(j)-j|<2,011 .
$$

Show that there are infinitely many natural numbers K such that f maps the set

$$
\{n \mid 0 \leqslant n \leqslant K\}
$$

onto itself.
3 We are given a non-isosceles triangle $A B C$ with incenter I. Show that the circumcircle k of the triangle $A I B$ does not touch the lines $C A$ and $C B$.
Let P be the second point of intersection of k with $C A$ and let Q be the second point of intersection of k with $C B$.
Show that the four points A, B, P and Q (not necessarily in this order) are the vertices of a trapezoid.

Day 2

1 Determine all pairs (a, b) of non-negative integers, such that $a^{b}+b$ divides $a^{2 b}+2 b$.
(Remark: $0^{0}=1$.)

2 Let k and n be positive integers.
Show that if $x_{j}(1 \leqslant j \leqslant n)$ are real numbers with $\sum_{j=1}^{n} \frac{1}{x_{j}^{2 k}+k}=\frac{1}{k}$, then

$$
\sum_{j=1}^{n} \frac{1}{x_{j}^{2^{k+1}}+k+2} \leqslant \frac{1}{k+1} .
$$

3 Two circles k_{1} and k_{2} with radii r_{1} and r_{2} touch each outside at point Q. The other endpoints of the diameters through Q are P on k_{1} and R on k_{2}.
We choose two points A and B, one on each of the $\operatorname{arcs} P Q$ of k_{1}. ($P B Q A$ is a convex quadrangle.)
Further, let C be the second point of intersection of the line $A Q$ with k_{2} and let D be the second point of intersection of the line $B Q$ with k_{2}.
The lines $P B$ and $R C$ intersect in U and the lines $P A$ and $R D$ intersect in V.
Show that there is a point Z that lies on all of these lines $U V$.

