AoPS Community

Federal Competition For Advanced Students, Part 22012

www.artofproblemsolving.com/community/c3764
by ropro01

Day 1

1 Determine the maximum value of m, such that the inequality

$$
\left(a^{2}+4\left(b^{2}+c^{2}\right)\right)\left(b^{2}+4\left(a^{2}+c^{2}\right)\right)\left(c^{2}+4\left(a^{2}+b^{2}\right)\right) \geq m
$$

holds for every $a, b, c \in \mathbb{R} \backslash\{0\}$ with $\left|\frac{1}{a}\right|+\left|\frac{1}{b}\right|+\left|\frac{1}{c}\right| \leq 3$.
When does equality occur?
2 Solve over \mathbb{Z} :

$$
x^{4} y^{3}(y-x)=x^{3} y^{4}-216
$$

3 We call an isosceles trapezoid $P Q R S$ interesting, if it is inscribed in the unit square $A B C D$ in such a way, that on every side of the square lies exactly one vertex of the trapezoid and that the lines connecting the midpoints of two adjacent sides of the trapezoid are parallel to the sides of the square.

Find all interesting isosceles trapezoids and their areas.

Day 2

1 Given a sequence $<a_{1}, a_{2}, a_{3}, \cdots>$ of real numbers, we define m_{n} as the arithmetic mean of the numbers a_{1} to a_{n} for $n \in \mathbb{Z}^{+}$.
If there is a real number C, such that

$$
(i-j) m_{k}+(j-k) m_{i}+(k-i) m_{j}=C
$$

for every triple (i, j, k) of distinct positive integers, prove that the sequence $<a_{1}, a_{2}, a_{3}, \cdots>$ is an arithmetic progression.

2 We define N as the set of natural numbers $n<10^{6}$ with the following property:
There exists an integer exponent k with $1 \leq k \leq 43$, such that $2012 \mid n^{k}-1$.
Find $|N|$.

AoPS Community

3 Given an equilateral triangle $A B C$ with sidelength 2, we consider all equilateral triangles $P Q R$ with sidelength 1 such that
$-P$ lies on the side $A B$,
$-Q$ lies on the side $A C$, and
$-R$ lies in the inside or on the perimeter of $A B C$.
Find the locus of the centroids of all such triangles $P Q R$.

