Art of Problem Solving

AoPS Community

Federal Competition For Advanced Students, Part 22013

www.artofproblemsolving.com/community/c3765
by Martin N .

Day 1

1 For each pair (a, b) of positive integers, determine all non-negative integers n such that

$$
b+\left\lfloor\frac{n}{a}\right\rfloor=\left\lceil\frac{n+b}{a}\right\rceil .
$$

2 Let k be an integer. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(0)=0$ and

$$
f\left(x^{k} y^{k}\right)=x y f(x) f(y) \quad \text { for } x, y \neq 0 .
$$

3 A square and an equilateral triangle are inscribed in a same circle. The seven vertices form a convex heptagon S inscribed in the circle (S might be a hexagon if two vertices coincide). For which positions of the triangle relative to the square does S have the largest and smallest area, respectively?

Day 2

4 For a positive integer n, let $a_{1}, a_{2}, \ldots a_{n}$ be nonnegative real numbers such that for all real numbers $x_{1}>x_{2}>\ldots>x_{n}>0$ with $x_{1}+x_{2}+\ldots+x_{n}<1$, the inequality $\sum_{k=1}^{n} a_{k} x_{k}^{3}<1$ holds. Show that

$$
n a_{1}+(n-1) a_{2}+\ldots+(n-j+1) a_{j}+\ldots+a_{n} \leqslant \frac{n^{2}(n+1)^{2}}{4}
$$

$5 \quad$ Let $n \geqslant 3$ be an integer. Let $A_{1} A_{2} \ldots A_{n}$ be a convex n-gon. Consider a line g through A_{1} that does not contain a further vertice of the n-gon. Let h be the perpendicular to g through A_{1}. Project the n-gon orthogonally on h.
For $j=1, \ldots, n$, let B_{j} be the image of A_{j} under this projection. The line g is called admissible if the points B_{j} are pairwise distinct.
Consider all convex n-gons and all admissible lines g. How many different orders of the points B_{1}, \ldots, B_{n} are possible?

6 Consider a regular octahedron $A B C D E F$ with lower vertex E, upper vertex F, middle crosssection $A B C D$, midpoint M and circumscribed sphere k. Further, let X be an arbitrary point inside the face $A B F$. Let the line $E X$ intersect k in E and Z, and the plane $A B C D$ in Y. Show that $\varangle E M Z=\varangle E Y F$.

