

AoPS Community 2013 Federal Competition For Advanced Students, Part 2

Federal Competition For Advanced Students, Part 2 2013

www.artofproblemsolving.com/community/c3765 by Martin N.

Day 1

1 For each pair (*a*, *b*) of positive integers, determine all non-negative integers *n* such that

$$b + \left\lfloor \frac{n}{a} \right\rfloor = \left\lceil \frac{n+b}{a} \right\rceil$$

2 Let k be an integer. Determine all functions $f \colon \mathbb{R} \to \mathbb{R}$ with f(0) = 0 and

$$f(x^k y^k) = xyf(x)f(y)$$
 for $x, y \neq 0$.

3 A square and an equilateral triangle are inscribed in a same circle. The seven vertices form a convex heptagon *S* inscribed in the circle (*S* might be a hexagon if two vertices coincide). For which positions of the triangle relative to the square does *S* have the largest and smallest area, respectively?

Day 2

4 For a positive integer n, let $a_1, a_2, \ldots a_n$ be nonnegative real numbers such that for all real numbers $x_1 > x_2 > \ldots > x_n > 0$ with $x_1 + x_2 + \ldots + x_n < 1$, the inequality $\sum_{k=1}^n a_k x_k^3 < 1$ holds. Show that

$$na_1 + (n-1)a_2 + \ldots + (n-j+1)a_j + \ldots + a_n \leq \frac{n^2(n+1)^2}{4}.$$

5 Let $n \ge 3$ be an integer. Let $A_1 A_2 \dots A_n$ be a convex *n*-gon. Consider a line *g* through A_1 that does not contain a further vertice of the *n*-gon. Let *h* be the perpendicular to *g* through A_1 . Project the *n*-gon orthogonally on *h*. For $j = 1, \dots, n$, let B_j be the image of A_j under this projection. The line *g* is called admissible if the points B_j are pairwise distinct. Consider all convex *n*-gons and all admissible lines *g*. How many different orders of the points B_1, \dots, B_n are possible?

AoPS Community 2013 Federal Competition For Advanced Students, Part 2

6 Consider a regular octahedron ABCDEF with lower vertex E, upper vertex F, middle crosssection ABCD, midpoint M and circumscribed sphere k. Further, let X be an arbitrary point inside the face ABF. Let the line EX intersect k in E and Z, and the plane ABCD in Y. Show that $\triangleleft EMZ = \triangleleft EYF$.

Act of Problem Solving is an ACS WASC Accredited School.