AoPS Community

1970 Regional Competition For Advanced Students

Regional Competition For Advanced Students 1970

www.artofproblemsolving.com/community/c3766
by Binomial-theorem

1 Let x, y, z be positive real numbers such that $x+y+z=1$ Prove that always $\left(1+\frac{1}{x}\right) \times\left(1+\frac{1}{y}\right) \times$ $\left(1+\frac{1}{z}\right) \geq 64$
When does equality hold?
2 In the plane seven different points $P_{1}, P_{2}, P_{3}, P_{4}, Q_{1}, Q_{2}, Q_{3}$ are given. The points $P_{1}, P_{2}, P_{3}, P_{4}$ are on the straight line p, the points Q_{1}, Q_{2}, Q_{3} are not on p. By each of the three points Q_{1}, Q_{2}, Q_{3} the perpendiculars are drawn on the straight lines connecting points different of them. Prove that the maximum's number of the possibles intersections of all perpendiculars is to 286 , if the points Q_{1}, Q_{2}, Q_{3} are taken in account as intersections.
$3 \quad E_{1}$ and E_{2} are parallel planes and their distance is p.
(a) How long is the seitenkante of the regular octahedron such that a side lies in E_{1} and another in E_{2} ?
(b) E is a plane between E_{1} and E_{2}, parallel to E_{1} and E_{2}, so that its distances from E_{1} and E_{2} are in ratio 1:2
Draw the intersection figure of E and the octahedron for $P=4 \sqrt{\frac{3}{2}} \mathrm{~cm}$ and justifies, why the that figure must look in such a way

4 Find all real solutions of the following set of equations:

$$
\begin{gathered}
72 x^{3}+4 x y^{2}=11 y^{3} \\
27 x^{5}-45 x^{4} y-10 x^{2} y^{3}=\frac{-143}{32} y^{5}
\end{gathered}
$$

