AoPS Community

2004 Regional Competition For Advanced Students

Regional Competition For Advanced Students 2004

www.artofproblemsolving.com/community/c3767
by valerie

1 Determine all integers a and b, so that $\left(a^{3}+b\right)\left(a+b^{3}\right)=(a+b)^{4}$
2 Solve the following equation for real numbers: $\sqrt{4-x \sqrt{4-(x-2) \sqrt{1+(x-5)(x-7)}}}=\frac{5 x-6-x^{2}}{2}$ (all square roots are non negative)

3 Given is a convex quadrilateral $A B C D$ with $\angle A D C=\angle B C D>90^{\circ}$.
Let E be the point of intersection of the line $A C$ with the parallel line to $A D$ through B and F be the point of intersection of the line $B D$ with the parallel line to $B C$ through A. Show that $E F$ is parallel to $C D$

4 The sequence $<x_{n}>$ is defined through: $x_{n+1}=\left(\frac{n}{2004}+\frac{1}{n}\right) x_{n}^{2}-\frac{n^{3}}{2004}+1$ for $n>0$ Let x_{1} be a non-negative integer smaller than 204 so that all members of the sequence are non-negative integers.
Show that there exist infinitely many prime numbers in this sequence.

