AoPS Community

Regional Competition For Advanced Students 2005

www.artofproblemsolving.com/community/c3768
by FelixD

1 Show for all integers $n \geq 2005$ the following chaine of inequalities: $(n+830)^{2005}<n(n+$ 1) $\ldots(n+2004)<(n+1002)^{2005}$

2 Construct the semicircle h with the diameter $A B$ and the midpoint M. Now construct the semicircle k with the diameter $M B$ on the same side as h. Let X and Y be points on k, such that the $\operatorname{arc} B X$ is $\frac{3}{2}$ times the arc $B Y$. The line $M Y$ intersects the line $B X$ in D and the semicircle h in C.
Show that Y ist he midpoint of $C D$.
$3 \quad$ For which values of k and d has the system $x^{3}+y^{3}=2$ and $y=k x+d$ no real solutions (x, y) ?

4 Prove: if an infinte arithmetic sequence ($a_{n}=a_{0}+n d$) of positive real numbers contains two different powers of an integer $a>1$, then the sequence contains an infinite geometric sequence ($b_{n}=b_{0} q^{n}$) of real numbers.

