AoPS Community

2006 Regional Competition For Advanced Students

Regional Competition For Advanced Students 2006

www.artofproblemsolving.com/community/c3769
by valerie

1 Let $0<x<y$ be real numbers. Let $H=\frac{2 x y}{x+y}, G=\sqrt{x y}, A=\frac{x+y}{2}, Q=\sqrt{\frac{x^{2}+y^{2}}{2}}$
be the harmonic, geometric, arithmetic and root mean square (quadratic mean) of x and y. As generally known $H<G<A<Q$. Arrange the intervals $[H, G],[G, A]$ and $[A, Q]$ in ascending order by their length.

2 Let $n>1$ be a positive integer an a a real number. Determine all real solutions ($x_{1}, x_{2}, \ldots, x_{n}$) to following system of equations: $x_{1}+a x_{2}=0 x_{2}+a^{2} x_{3}=0$
$x_{k}+a^{k} x_{k+1}=0$
$x_{n}+a^{n} x_{1}=0$
3 In a non isosceles triangle $A B C$ let w be the angle bisector of the exterior angle at C. Let D be the point of intersection of w with the extension of $A B$. Let k_{A} be the circumcircle of the triangle $A D C$ and analogy k_{B} the circumcircle of the triangle $B D C$. Let t_{A} be the tangent line to k_{A} in A and t_{B} the tangent line to k_{B} in B . Let P be the point of intersection of t_{A} and t_{B}. Given are the points A and B. Determine the set of points $P=P(C)$ over all points C, so that $A B C$ is a non isosceles, acute-angled triangle.

4 Let $<h_{n}>n \in \mathbb{N}$ a harmonic sequence of positive real numbers (that means that every h_{n} is the harmonic mean of its two neighbours h_{n-1} and $h_{n+1}: h_{n}=\frac{2 h_{n-1} h_{n+1}}{h_{n-1}+h_{n+1}}$)
Show that: if the sequence includes a member h_{j}, which is the square of a rational number, it includes infinitely many members h_{k}, which are squares of rational numbers.

