AoPS Community

Regional Competition For Advanced Students 2007

www.artofproblemsolving.com/community/c3770
by FelixD

1 Let $0<x_{0}, x_{1}, \ldots, x_{669}<1$ be pairwise distinct real numbers. Show that there exists a pair $\left(x_{i}, x_{j}\right)$ with $0<x_{i} x_{j}\left(x_{j}-x_{i}\right)<\frac{1}{2007}$

2 Find all tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ of positive integers with $x_{1}>x_{2}>x_{3}>x_{4}>x_{5}>0$ and $\left\lfloor\frac{x_{1}+x_{2}}{3}\right\rfloor^{2}+\left\lfloor\frac{x_{2}+x_{3}}{3}\right\rfloor^{2}+\left\lfloor\frac{x_{3}+x_{4}}{3}\right\rfloor^{2}+\left\lfloor\frac{x_{4}+x_{5}}{3}\right\rfloor^{2}=38$.

3 Let a be a positive real number and n a non-negative integer. Determine $S-T$, where $S=$ $\sum_{k=-2 n}^{2 n+1} \frac{(k-1)^{2}}{a^{\left.\| \frac{k}{2}\right\rfloor}}$ and $T=\sum_{k=-2 n}^{2 n+1} \frac{k^{2}}{a^{\left\|\frac{k}{2}\right\|}}$

4 Let M be the intersection of the diagonals of a convex quadrilateral $A B C D$. Determine all such quadrilaterals for which there exists a line g that passes through M and intersects the side $A B$ in P and the side $C D$ in Q, such that the four triangles $A P M, B P M, C Q M, D Q M$ are similar.

