AoPS Community

2008 Regional Competition For Advanced Students

Regional Competition For Advanced Students 2008

www.artofproblemsolving.com/community/c3771
by valerie

1 Show: For all real numbers a, b, c with $0<a, b, c<1$ is:

$$
\sqrt{a^{2} b c+a b^{2} c+a b c^{2}}+\sqrt{(1-a)^{2}(1-b)(1-c)+(1-a)(1-b)^{2}(1-c)+(1-a)(1-b)(1-c)^{2}}<\sqrt{3} .
$$

2 For a real number x is $[x]$ the next smaller integer to x, that is the integer g with $g \leqq<g+1$, and $\{x\}=x-[x]$ is the decimal part of x.
Determine all triples (a, b, c) of real numbers, which fulfil the following system of equations:

$$
\begin{aligned}
& \{a\}+[b]+\{c\}=2,9 \\
& \{b\}+[c]+\{a\}=5,3 \\
& \{c\}+[a]+\{b\}=4,0
\end{aligned}
$$

3 Given is an acute angled triangle $A B C$. Determine all points P inside the triangle with

$$
1 \leq \frac{\angle A P B}{\angle A C B}, \frac{\angle B P C}{\angle B A C}, \frac{\angle C P A}{\angle C B A} \leq 2
$$

$4 \quad$ For every positive integer n let

$$
a_{n}=\sum_{k=n}^{2 n} \frac{(2 k+1)^{n}}{k}
$$

Show that there exists no n, for which a_{n} is a non-negative integer.

