AoPS Community

2011 Regional Competition For Advanced Students

Regional Competition For Advanced Students 2011

www.artofproblemsolving.com/community/c3772
by Martin N .

1 Let $p_{1}, p_{2}, \ldots, p_{42}$ be 42 pairwise distinct prime numbers. Show that the sum

$$
\sum_{j=1}^{42} \frac{1}{p_{j}^{2}+1}
$$

is not a unit fraction $\frac{1}{n^{2}}$ of some integer square number.
2 Determine all triples (x, y, z) of real numbers such that the following system of equations holds true:

$$
\begin{aligned}
2^{\sqrt[3]{x^{2}}} \cdot 4^{\sqrt[3]{y^{2}}} \cdot 16^{\sqrt[3]{z^{2}}} & =128 \\
\left(x y^{2}+z^{4}\right)^{2} & =4+\left(x y^{2}-z^{4}\right)^{2} .
\end{aligned}
$$

$3 \quad$ Let k be a circle centered at M and let t be a tangentline to k through some point $T \in k$. Let P be a point on t and let $g \neq t$ be a line through P intersecting k at U and V. Let S be the point on k bisecting the arc $U V$ not containing T and let Q be the the image of P under a reflection over $S T$.
Prove that Q, T, U and V are vertices of a trapezoid.
4 Define the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of positive integers by $a_{1}=1$ and the condition that a_{n+1} is the least integer such that

$$
\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)>\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

Determine the set of elements of $\left(a_{n}\right)$.

