

## **AoPS Community**

**Regional Competition For Advanced Students 2011** www.artofproblemsolving.com/community/c3772 by Martin N.

1 Let  $p_1, p_2, \ldots, p_{42}$  be 42 pairwise distinct prime numbers. Show that the sum

$$\sum_{j=1}^{42} \frac{1}{p_j^2 + 1}$$

is not a unit fraction  $\frac{1}{n^2}$  of some integer square number.

**2** Determine all triples (x, y, z) of real numbers such that the following system of equations holds true:

$$2^{\sqrt[3]{x^2}} \cdot 4^{\sqrt[3]{y^2}} \cdot 16^{\sqrt[3]{z^2}} = 128$$
$$(xy^2 + z^4)^2 = 4 + (xy^2 - z^4)^2.$$

**3** Let k be a circle centered at M and let t be a tangentline to k through some point  $T \in k$ . Let P be a point on t and let  $g \neq t$  be a line through P intersecting k at U and V. Let S be the point on k bisecting the arc UV not containing T and let Q be the the image of P under a reflection over ST.

Prove that Q, T, U and V are vertices of a trapezoid.

**4** Define the sequence  $(a_n)_{n=1}^{\infty}$  of positive integers by  $a_1 = 1$  and the condition that  $a_{n+1}$  is the least integer such that

 $lcm(a_1, a_2, \dots, a_{n+1}) > lcm(a_1, a_2, \dots, a_n).$ 

Determine the set of elements of  $(a_n)$ .

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.