AoPS Community

Federal Competition For Advanced Students, Part 12003

www.artofproblemsolving.com/community/c3775
by Amir Hossein

1 Find all triples of prime numbers (p, q, r) such that $p^{q}+p^{r}$ is a perfect square.
2 Find the greatest and smallest value of $f(x, y)=y-2 x$, if \mathbf{x}, y are distinct non-negative real numbers with $\frac{x^{2}+y^{2}}{x+y} \leq 4$.

3 Given a positive real number t, find the number of real solutions a, b, c, d of the system

$$
a\left(1-b^{2}\right)=b\left(1-c^{2}\right)=c\left(1-d^{2}\right)=d\left(1-a^{2}\right)=t .
$$

4 In a parallelogram $A B C D$, points E and F are the midpoints of $A B$ and $B C$, respectively, and P is the intersection of $E C$ and $F D$. Prove that the segments $A P, B P, C P$ and $D P$ divide the parallelogram into four triangles whose areas are in the ratio $1: 2: 3: 4$.

